Event-basierte Bewegungskorrektur in der klinischen Routine

<u>J. Langner</u>¹, H. Mölle¹, S. Dittrich¹, F. Hofheinz³, L. Oehme², B. Beuthien-Baumann², J. van den Hoff^{1,2}

¹ PET-Zentrum, Institut für Radiopharmazie, Forschungszentrum Dresden-Rossendorf
 ² Klinik- und Poliklinik für Nuklearmedizin, Universitätsklinikum Carl Gustav Carus Dresden
 ³ ABX advanced biochemical compounds, Radeberg

- Patientenbewegung bei PET-Untersuchungen sind problematisch und unvermeidbar
- Event-basierte Bewegungskorrektur erlaubt eine exakte Korrektur
- Vorgenommene Optimierungen ermöglichten klinischen Einsatz (ECAT Exact HR+)
 - Langner, J., et al. IEEE MIC 2008; Oct 22 Oct 25, Dresden
 - Langner, J., et al. DGN 2008 V136
 - Langner, J., et al. DGN 2007 V78
 - Langner, J., et al. DGN 2006 A50
 - Langner, J., et al. Z. Med. Phys. 2006; 16(1):75-82.

Ziel

- Betrachtung des Einflusses der Bewegungskorrektur
- Bestimmung der qualitativen und quantitativen Effekte

Methodik – Akquisition der Bewegungsdaten

- Externe Bewegungsmessung mit optischem Trackingsystem
- Integrierte Infrarotblitze
- Reflexion durch passive Marker
- Maximale Abtastrate 60Hz,
 < 1mm Auflösung
- Ausgabe:
 - 3 Translationsparameter
 - 3 Rotationsparameter

Aufnahme im *Listmode*-Format
 > Registrierung jeder Line-of-Response (LOR)

- Aufnahme im *Listmode*-Format
 > Registrierung jeder Line-of-Response (LOR)
- Räumliche Transformation jeder LOR
- Einsortieren aller korrigierter LORs in Sinogramm
- Nutzung der Standard-Bildrekonstruktion

Forschungszentrum Dresden-Rossendorf • Institut für Radiopharmazie • Jens Langner • 23. April 2009 • V45

• Von 15 relevanten [¹⁸F]DOPA Hirnmessungen Auswahl einer einzelnen Beispielmessung (3) Langner, J., et al. DGN 2007 - V78

	Dosage	Duration	# frames	# 'significant'	max.	mean	motion
				(> 1 mm) motions	motion	motion	score
(1)	$291\mathrm{MBq}$	$55\mathrm{min}$	27	17	$3.7\mathrm{mm}$	$3.1\mathrm{mm}$	3
(2)	$252\mathrm{MBq}$	$55\mathrm{min}$	27	26	$5.0\mathrm{mm}$	$3.6\mathrm{mm}$	3
\Rightarrow (3)	$171\mathrm{MBq}$	$55\mathrm{min}$	27	113	$19.4\mathrm{mm}$	$11.3\mathrm{mm}$	5
(4)	$269\mathrm{MBq}$	$55\mathrm{min}$	27	70	$7.9\mathrm{mm}$	$5.7\mathrm{mm}$	5
(5)	$299\mathrm{MBq}$	$55\mathrm{min}$	27	45	$5.7\mathrm{mm}$	$5.0\mathrm{mm}$	4
(6)	$316\mathrm{MBq}$	$55\mathrm{min}$	27	801	$9.4\mathrm{mm}$	$6.3\mathrm{mm}$	5
(7)	$254\mathrm{MBq}$	$55\mathrm{min}$	27	41	$8.6\mathrm{mm}$	$6.6\mathrm{mm}$	5
(8)	$318\mathrm{MBq}$	$55\mathrm{min}$	27	19	$8.5\mathrm{mm}$	$6.0\mathrm{mm}$	5
(9)	$250\mathrm{MBq}$	$55\mathrm{min}$	27	14	$8.4\mathrm{mm}$	$6.0\mathrm{mm}$	5
(10)	$312\mathrm{MBq}$	$55\mathrm{min}$	27	22	$5.4\mathrm{mm}$	$3.2\mathrm{mm}$	4
(11)	$292\mathrm{MBq}$	$55\mathrm{min}$	27	12	$6.3\mathrm{mm}$	$3.7\mathrm{mm}$	4
(12)	$300\mathrm{MBq}$	$55\mathrm{min}$	27	16	$3.4\mathrm{mm}$	$3.4\mathrm{mm}$	3
(13)	$183\mathrm{MBq}$	$90\mathrm{min}$	27	125	$8.4\mathrm{mm}$	$5.2\mathrm{mm}$	5
(14)	$275\mathrm{MBq}$	$55\mathrm{min}$	27	92	$6.5\mathrm{mm}$	$3.6\mathrm{mm}$	4
(15)	$264\mathrm{MBq}$	$55\mathrm{min}$	27	17	$7.1\mathrm{mm}$	$5.3\mathrm{mm}$	5

 Auswahl über die Bewegungsparameter "max/mean motion" als "worst-case" Beispiel

113 sign.motion found on artifical head surface (r=100mm)

Langner, J., et al. DGN 2007 - V78

Forschungszentrum Dresden-Rossendorf • Institut für Radiopharmazie • Jens Langner • 23. April 2009 • V45

Quantitative Auswertung

- Positionierung von 8 ROIs (3D) innerhalb des Striatum + 1 ROI im Referenzgewebe
- Vergleich der Zeitaktivitätskurven (TAC) sowie Analyse der Einstromraten (R₀k₃) eines Zweikompartment-Modells mit Referenzgewebe

Ergebnisse – Quantitative Bewertung

Quantitative Auswertung der TAC zeigt bis zu 30% Unterschiede

•

- Relevante Änderung der R₀k₃ Einstromraten
- Restaurierung offensichtlich inkorrekter (negativer) R₀k₃

		Uncorrected	Compensated	norm
ROI	volume [ml]	$R_0 k_3^{mean}$ [1/min]	$R_0 k_3^{mean}$ [1/min]	$R_0 k_3^{mean} \pm 1 \text{sd.}$
ncr	0.524	0.01559	0.01274	0.0166 ± 0.0010
ncl	0.524	0.00460	0.01054	0.0161 ± 0.0022
\mathbf{pr}	1.573	0.00189	0.00947	0.0160 ± 0.0014
pl	1.573	0.00406	0.00951	0.0167 ± 0.0011
pra	0.524	0.00425	0.00938	
\mathbf{prm}	0.524	0.00325	0.01099	
\mathbf{prp}	0.524	0.00224	0.00875	
pla	0.524	0.00948	0.00885	
\mathbf{plm}	0.524	-0.00079	0.00799	
plp	0.524	0.00133	0.01024	

Qualitativer Vergleich

- Verbesserung des Bildkontrastes
- Sichtbare Reduzierung der Bewegungsartefakte

۲

Korrigiert

Reduzierung der Bewegungsartefakte auch in parametrischen Bildern sichtbar

Unkorrigiert

.

Zusammenfassung

- Erfolgreiche Integration der event-basierten Bewegungskorrektur in der klinischen Routine durch geeignete Methoden (z.B. graphische Nutzeroberflächen)
- Patientenbewegung kann massive Auswirkung auf Daten haben
- Reduzierung der qualitativen und quantitativen Einflüsse der Patientenbewegung auf die Bilddaten
- Nutzung einiger Methoden bereits an anderen Zentren
 - Forschungszentrum Jülich
 - Columbia University / New York

Ausblick

- Auswertung über ein größeres Patientenkollektiv
 - Bereits ca. 300 Listmode/Bewegungsaufnahmen durchgeführt
- Vergleich mit anderen Korrekturmethoden
- Einbeziehen einer LM-Transmission