
University of Applied Sciences, Dresden

Department of Computer Science

Development of a Parallel Computing Optimized Head

Movement Correction Method in

Positron-Emission-Tomography

Submitted in partial fulfillment of the requirements for the degree

”Master of Computer Science“

Author: Jens Langner

Student number: 10895

Supervisor: Prof. Dr. rer. nat. habil. Heino Iwe

Prof. Dr. biol. hum. habil. Dr. rer. nat. Jörg van den Hoff

Submission date: December 03, 2003



Copyright c© Jens Langner, MMIII. All rights reserved.

Jens.Langner@light-speed.de

http://www.jens-langner.de/

The author hereby grants permission to the University of Applied Sciences Dresden and the Rossendorf Research Center

to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part.

http://www.jens-langner.de/


Abstract

As a modern tomographic technique, Positron-Emission-Tomography (PET) enables non invas-
ive imaging of metabolic processes in living organisms. It allows the visualization of malfunc-
tions which are characteristic for neurological, cardiological, and oncological diseases. Chemical
tracers labeled with radioactive positron emitting isotopes are injected into the patient and the
decay of the isotopes is then observed with the detectors of the tomograph. This information is
used to compute the spatial distribution of the labeled tracers.

Since the spatial resolution of PET devices increases steadily, the whole sensitive process of
tomograph imaging requires minimizing not only the disturbing effects, which are specific for the
PET measurement method, such as random or scattered coincidences, but also external effects
like body movement of the patient.
Methods to correct the influences of such patient movement have been developed in previous
studies at the PET center, Rossendorf. These methods are based on the spatial correction
of each registered coincidence. However, the large amount of data and the complexity of the
correction algorithms limited the application to selected studies.

The aim of this thesis is to optimize the correction algorithms in a way that allows move-
ment correction in routinely performed PET examinations. The object-oriented development
in C++ with support of the platform independent Qt framework enables the employment of
multiprocessor systems. In addition, a graphical user interface allows the use of the application
by the medical assistant technicians of the PET center. Furthermore, the application provides
methods to acquire and administrate movement information directly from the motion tracking
system via network communication.

Due to the parallelization the performance of the new implementation demonstrates a signi-
ficant improvement. The parallel optimizations and the implementation of an intuitive usable
graphical interface finally enables the PET center Rossendorf to use movement correction in
routine patient investigations, thus providing patients an improved tomograph imaging.





Zusammenfassung

Die Positronen-Emissions-Tomographie (PET) ist ein modernes medizinisches Diagnoseverfahren,
das nichtinvasive Einblicke in den Stoffwechsel lebender Organismen ermöglicht. Es erfasst Funk-
tionsstörungen, die für neurologische, kardiologische und onkologische Erkrankungen charakter-
istisch sind. Hierzu werden dem Patienten radioaktive, positronen emittierende Tracer injiziert.
Der radioaktive Zerfall der Isotope wird dabei von den umgebenden Detektoren gemessen und
die Aktivitätsverteilung durch Rekonstruktionsverfahren bildlich darstellbar gemacht.

Da sich die Auflösung solcher Tomographen stetig verbessert und somit sich der Einfluss von
qualitätsmindernden Faktoren wie z.B. das Auftreten von zufälligen oder gestreuten Koinziden-
zen erhöht, gewinnt die Korrektur dieser Einflüsse immer mehr an Bedeutung. Hierzu zählt
unter anderem auch die Korrektur der Einflüsse eventueller Patientenbewegungen während der
tomographischen Untersuchung. In vorangegangenen Studien wurde daher am PET Zentrum
Rossendorf ein Verfahren entwickelt, um die nachträgliche listmode-basierte Korrektur dieser
Bewegungen durch computergestützte Verfahren zu ermöglichen. Bisher schränkte der hohe
Rechenaufwand den Einsatz dieser Methoden jedoch ein.

Diese Arbeit befasst sich daher mit der Aufgabe, durch geeignete Parallelisierung der Kor-
rekturalgorithmen eine Optimierung dieses Verfahrens in dem Maße zu ermöglichen, der einen
routinemässigen Einsatz während PET Untersuchungen erlaubt. Hierbei lässt die durchgeführte
objektorientierte Softwareentwicklung in C++ , unter Zuhilfenahme des plattformübergreifenden
Qt Frameworks, eine Nutzung von Mehrprozessorsystemen zu. Zusätzlich ermöglicht eine graph-
ische Oberfläche die Bedienung einer solchen Bewegungskorrektur durch die medizinisch techn-
ischen Assistenten des PET Zentrums. Um darüber hinaus die Administration und Datenakquis-
ition der Bewegungsdaten zu ermöglichen, stellt die entwickelte Anwendung Funktionen bereit,
die die direkte Kommunikation mit dem Bewegungstrackingsystem erlauben.

Es zeigte sich, dass durch die Parallelisierung die Geschwindigkeit wesentlich gesteigert
wurde. Die parallelen Optimierungen und die Implementation einer intuitiv nutzbaren graph-
ischen Oberfläche erlaubt es dem PET Zentrum nunmehr Bewegungskorrekturen innerhalb von
Rou-tineuntersuchungen durchzuführen, um somit den Patienten ein verbessertes Bildgebungs-
verfahren bereitzustellen.





Acknowledgments

My sincere thanks goes to all who supported me throughout the work on this thesis, and to all

those who helped me whenever and wherever required.

Special thanks go to the head of the PET center Rossendorf, Prof. Jörg van den Hoff and to

Prof. Heino Iwe of the Univerisity of Applied Sciences Dresden who gave me the opportunity to

write my thesis in the interesting field of nuclear medicine. The gathered experience during the

work on this thesis and the way I was allowed to engage myself in medical research have been

unique.

Close interdisciplinary teamwork at the PET center contributed significantly to the success

of this thesis. Especially, Dr. Paul Bühler has to be named here, as he guided me throughout the

whole time, always willing to answer my questions and concerns in fields of physics and movement

correction foundations. I would also like to thank Dr. Edmund Will, Christian Pötzsch and Uwe

Just for interesting discussions.

Last, but by no means least, I would like to thank my family for all their support during my

study, as well as Jens Tröger (aka savage) for being the most supportive and stunning friend

ever.

And Sylvia for holding on.





Contents

Introduction v

1 Positron-Emission-Tomography 1

1.1 Physical Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Coincidence Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Quality Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Physical Influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1.1 Positron Lifetime and Angular Deviation . . . . . . . . . . . . . 3

1.3.1.2 Photon Attenuation . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1.3 Isotope Lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Scanner Influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2.1 Random Coincidences . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2.2 Scattered Coincidences . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2.3 Variable Detector Sensitivity . . . . . . . . . . . . . . . . . . . . 6

1.3.2.4 Electronic Dead Time . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.2.5 Crystal Characteristics . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 External Influences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3.1 Organ Movement . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.3.2 Patient Movement . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Quantification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 The PET Scanner - ECAT EXACT HR+ . . . . . . . . . . . . . . . . . . . . . . 9

2 Coincidence Position Correction 13

2.1 Different Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.1 Cross-Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.2 Spatial Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Position Correction Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Problems and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1.1 Normalization Correction . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1.2 LOR Discretization Correction . . . . . . . . . . . . . . . . . . . 20

i



ii CONTENTS

2.2.1.3 Out-of-FOV Correction . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Transformation Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 ARTtrackTMMotion Tracking System . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Implementation Aspects 27

3.1 Existing Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Requirement Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 User Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.2 Developer Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.1 Internal Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1.1 Programming Language . . . . . . . . . . . . . . . . . . . . . . . 32

3.3.1.2 GUI Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1.3 Multithreading Framework . . . . . . . . . . . . . . . . . . . . . 33

3.3.2 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2.1 PET Listmode Format . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2.2 ECAT File Format . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.2.3 Motion Tracking System . . . . . . . . . . . . . . . . . . . . . . 37

3.4 Implementation Prospect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 Parallel Computing Analysis 41

4.1 Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Dependency Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Stage 1 - Frame optimized parallelism . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Stage 2 - Out-of-FOV optimized parallelism . . . . . . . . . . . . . . . . . 46

4.2.3 Stage 3 - Sinogram sorting optimized parallelism . . . . . . . . . . . . . . 46

4.3 Hierarchical Thread Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 User Interface Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

5 Implementation 51

5.1 Mathematical Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Direct-Access Matrix Management . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Indirect-Access Matrix Management . . . . . . . . . . . . . . . . . . . . . 52

5.1.3 GNU Scientific Library (GSL) . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 External Interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.1 Listmode File Management . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.2 ECAT Sinogram File I/O . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.3 Motion Tracking Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.4 XML based Import/Export . . . . . . . . . . . . . . . . . . . . . . . . . . 57



CONTENTS iii

5.3 Application Use Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.1 Calibration Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3.2 Movement Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3.2.1 Thread Management . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.4 User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.1 Graphical Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4.2 Command-Line Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.5 Advanced Memory Management . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 Validation 65

6.1 Sinogram Sorting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2 Movement Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.2.1 Axial Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.2.2 Transaxial Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2.3 Rotational Movement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.2.4 In Vivo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.3 Performance Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Future Developments 75

8 Summary 77

A User Documentation 79

A.1 System Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.2 Command-Line Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

A.3 Graphical User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3.1 Main Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3.2 Movement Correction Components . . . . . . . . . . . . . . . . . . . . . . 82

A.3.2.1 Tracking Data GUI Components (1) . . . . . . . . . . . . . . . . 82

A.3.2.2 PET Data GUI Components (2) . . . . . . . . . . . . . . . . . . 83

A.3.2.3 Output Format GUI Components (3) . . . . . . . . . . . . . . . 84

A.3.2.4 Processing GUI Components (4) . . . . . . . . . . . . . . . . . . 85

A.3.3 Cross-Calibration Components . . . . . . . . . . . . . . . . . . . . . . . . 87

A.3.3.1 Data Storage Components (1) . . . . . . . . . . . . . . . . . . . 88

A.3.3.2 Data Source Components (2) . . . . . . . . . . . . . . . . . . . . 89

A.3.3.3 Statistical Components (3) . . . . . . . . . . . . . . . . . . . . . 90

A.3.4 Application Settings Components . . . . . . . . . . . . . . . . . . . . . . . 90

A.4 Cross-Platform GUI Layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91



iv CONTENTS

B Source Code Structure 93

B.1 C++ classes in module - src . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.2 C++ classes in module - config . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

B.3 C++ classes in module - correction . . . . . . . . . . . . . . . . . . . . . . . . . 95

B.4 C++ classes in module - ecat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.5 C++ classes in module - getopt . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

B.6 C++ classes in module - gui . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

B.6.1 C++ classes in submodule - gui/calibration . . . . . . . . . . . . . . . . 97

B.6.2 C++ classes in submodule - gui/plot . . . . . . . . . . . . . . . . . . . . 97

B.6.3 C++ classes in submodule - gui/correction . . . . . . . . . . . . . . . . 98

B.6.4 C++ classes within submodule - gui/settings . . . . . . . . . . . . . . . 98

B.7 C++ classes in module - math . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.8 C++ classes in module - tracking . . . . . . . . . . . . . . . . . . . . . . . . . . 99

B.9 C++ classes in module - pet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Theses 101

List of Figures 104

List of Tables 105

Listing 107

Abbreviations 109

Bibliography 112



Introduction

Modern tomography is a medical imaging technique which allows non invasive visualization

of internal structures in organisms. There exist different variants of tomography like X-ray

Computed Tomography (CT) or Magnetic Resonance Imaging (MRI), which all are used as

diagnostic tools in medicine and as scientific analysis tools in the life sciences in general.

After the development of the first CT by Hounsfield in 1972 [Hou72] this method had a

steadily increasing impact in the field of radiologic diagnostics and found a large distribution.

In CT, an external X-ray source produces radiation which penetrates the examination object

and is attenuated during the process. The remaining intensity is measured by X-ray sensitive

detectors around the object. Such methods are also called transmission based tomographic

methods and allow to calculate the regional tissue density.

In parallel, emission tomography has developed which allows the examination of metabolic

processes to gain a better understanding of organic functions, or to diagnose metabolism related

diseases like cerebral diseases1. For discovering alterations like tumors or metastases emission

tomography can be helpful, because tumor diseases frequently manifest themselves in changes

within the metabolism before tissue modifications are discovered via transmission tomography.

In fields of treatment planning and control emission tomography becomes more and more im-

portant because it allows physicians to track changes of the metabolism during the patient

treatment.

Positron-Emission-Tomography (PET) is the most sensitive variant where the physician

injects a positron emitting tracer into the bloodstream of the patient. Electron-positron-

annihilation leads to γ-radiation, which is measured by the surrounding detectors, so that the

distribution of the labeled substance within the body can be calculated and evaluated. In the

beginning, the expensive production of suited radio nuclides was the reason why PET had been

a scientific analysis tool only, but with the area-wide appropriation of such tracers PET has

become a routinely used method in the diagnosis of metabolic diseases.

In contrast to older PET systems, modern systems allow measurements in a three dimen-

sional mode. Such 3D-PET systems measure more data yielding higher sensitivity, but are also

more susceptible to several sources of external errors like scattered coincidences or the partly

inevitable patient movement during the acquisition. Some error sources like scattered coincid-

1e.g. Depression, Schizophrenia, Parkinson’s, or Alzheimer’s disease.

v



vi INTRODUCTION

ences can be minimized by better shielding2 of the Field-of-View (FOV) or through advanced

compensation methods. On the other hand, the patient movement can have a high impact on

the overall quality of the resulting data because PET examinations can take up to two hours and

it is improbable that the patient remains completely still during this acquisition time. There-

fore, means to compensate uncontrolled body movements have become more important, and

some PET research centers have started to develop methods to include movement correction

within PET examinations. The research center at Rossendorf, Germany started working on

such methods in mid 2002, when a stereoscopic infrared camera system was installed to allow

motion tracking of the patient during data acquisition.

After the physical and mathematical foundations for head motion corrections have been de-

veloped [Büh03], the aim of this thesis is to extend the development into the fields of computer

science. During the physical study, many computer related problems arise which have a high

impact on the performance of such movement corrections. The huge number of coincidence

channels and high count rate tolerance of PET scanners leads to a data output which can reach

several gigabyte3 of data. This data needs to be processed and synchronized with the motion

tracking data before image reconstruction can be performed. It is obvious that this process puts

a high pressure on the underlying computer systems. The aim is to relieve that pressure by

using computer science related techniques, especially in fields of parallel computing so that the

computation times can be minimized sufficiently to allow routine use of movement corrections

in PET.

The main tasks can be summarized as follows:

1. Parallel Computing Optimization

Multi-processor machines are common. Since all modern operating systems do support the

Symmetric Multi Processing (SMP) architecture, developers should always consider design-

ing software in a way that gives the underlying operating system the chance to distribute

independent parts on different processors. This requires to analyze algorithms and find

areas which can be computed in parallel using multithreading. Different multiprocessor

machines4 have to be supported natively, and the parallel computing implementation is

required to be based on a POSIX threads (pthread) compatible model to keep it portable

to other operating systems. Independent computational areas have to be identified and

data access needs to be synchronized via semaphores and mutual-exclusive mechanisms

to avoid race conditions. The parallel optimizations have to increase the performance of

the main algorithms sufficiently to allow processing of the movement corrections for all

routinely performed patient examinations.
2e.g. by using a so called neuro shield during head acquisition.
3an ordinary 3D-PET examination of 1 hour produces ≈ 5 gigabyte of raw data.
4one 4 processor Sun Ultra v480 with 16GB RAM and one 4 processor Sun v450 with 2GB RAM are available

at the PET center.



INTRODUCTION vii

2. Platform independent and object-oriented design

Keeping software development seminal is an important factor today. Therefore, the imple-

mentation of this thesis have to be platform independent. It have to be done with a modern

programming language that not only allows to maintain the source code on different plat-

forms, but also to reuse many of the individual parts for future developments. Thus, it

has to be implemented by using an object-oriented language and to be designed with the

Unified-Modeling-Language (UML), including a class based developer documentation.

3. Graphical user interface and optional command-line execution

To guarantee an intuitive usage, the application have to have a user interface that provides

graphical elements for all necessary parts of the movement correction. It have to provide

an expert and a novice mode to hide elements that are not necessary for routine operation.

Presenting the different functionality in separate parts of the user interface should make

the application more easier to use. In addition to the graphical user interface, a batched

command line execution have to be possible where the complete functionality is available

to the user.

4. Overall extensibility

Especially with medical application development, extensibility plays an important role.

The implemented methods and algorithms have to be extensible in their design so that

they could be easily adapted to other PET systems or distributed computing techniques.

Where applicable, all external interfaces have to use modern and interchangeable data

description standards like the eXtensible-Markup-Language (XML).

The layout of this thesis is as follows: Chapter one and two talk about the physical and

mathematical foundations. Chapter three discusses the performed analysis in fields of existing

solutions and user requirements. Chapter four and five discuss the undertaken parallel analysis

as well as the UML specific implementation details. In chapter six a validation of the imple-

mentation is presented. Chapter seven and eight discuss possibilities for future developments

as well as summarizing the work on this thesis. Appendix A summarizes the functionality and

options of the developed application in a user documentation. And finally, in appendix B all

developed classes together with their respective filename are presented.





Chapter 1

Positron-Emission-Tomography

As a non invasive, nuclear-medical imaging method, Positron-Emission-Tomography (PET) al-

lows to examine functional processes within a living organism. An injected chemical tracer

substance transports positron emitting radio-nuclides through the metabolism of the organism

leading to a characteristic distribution, thus making metabolic processes visible. PET is used as

an examination method to analyze the cerebral and myocardial metabolism as well as for tumor

diagnostics and support of tumor treatment planning and control.

1.1 Physical Fundamentals

According to the atomic model of Ernest Rutherford, atoms have a nucleus, which consists of

neutrons (n) and protons (p), and is surrounded by electrons (e−). The number of protons and

neutrons within the nucleus controls if an atom is stable or if it is radioactive and changes its

structure by transforming a proton into a neutron or vise versa.

An example of an instable atom is 13
7 N which has a half-life of 597,9 seconds and transforms

into the stable 13
6 C. This kind of transformation is also called a β+-decay where a positron (e+)

and neutrino (ν) are emitted [VBTM03]:

p → n + e+ + ν (1.1)

There exist many other positron emitting isotopes. Only those with short half-lifes are of in-

terest in PET because radiation protection is an important aspect of an examination.

The energy difference between the instable element and its stable product is carried away by

the emitted particles. While the almost massless uncharged neutrino can fly away unhindered,

the electrical positive charged positron interacts with the ambient matter. This continues until

it has lost a large portion of its initial kinetic energy and finally ends up in a matter-antimatter

reaction with an electron where both masses are transformed into energy. This is also called an

annihilation process that produces two γ-quanta (photons) with energies of 511keV which are

1



2 Chapter 1. Positron-Emission-Tomography

emitted in diametrically opposite directions1, as shown in figure 1.1.

ν

e+

e−

γ

γ

Figure 1.1: β+-decay and subsequent positron-electron annihilation into two 511keV γ-

quanta.

1.2 Coincidence Tomography

The annihilation process is the basis of coincidence2 tomography. If an annihilation within the

body of a patient takes place, the γ-quanta fly through the surrounding matter until they leave

the body and reach gamma sensitive detectors. These detectors consist of scintillator crystals in

which, for their physical characteristics, light flashes are produced when a quantum is absorbed.

The flashes are then converted by a photomultiplier into electrical signals which are processed

by a coincidence electronic to filter out those events that are received within a limited time

window (e.g. 10 − 20ns). Two γ-quanta detected within this time window describe a so called

Line Of Response (LOR) on which the annihilation process must have taken place.

While the γ-quanta are flying through the examined object they interact with the surround-

ing matter and get attenuated. This attenuation depends on the type of matter, differs from

object to object and has to be recorded during the PET examination with a so called trans-

mission scan. By taking the data of a transmission and emission scan into account, the image

reconstruction can compute the spatial distribution of the tracer. This allows the physician to

analyze the distribution of the accumulated tracer at arbitrary positions within the object. This

way it is possible to draw conclusions about the metabolism or to visualize tumors and meta-

stases which normally have an elevated metabolism and accumulate the radioactive substance

more strongly.

The used radio nuclides have a relatively short half-life which is the reason why a medical

facility providing PET examinations needs to produce those nuclides on demand and within

a short time frame. Particle accelerators (Cyclotrons) are being used to produce such radio

nuclides where stable elements like 11
5 B are bombarded with protons or deuterons which results

1with a typical FWHM of angular spread of 0.5◦

2the term coincidence refers to the nearly simultaneous detection of the two annihilation quanta.



1.3 Quality Limitations 3

Coincidence
Processing Unit

Image ReconstructionAnnihilation

Sinogram/
Listmode Data

e+

e−

γ

γ

ν

Figure 1.2: Schema showing the different processing steps of the Positron-Emission-

Tomography: Starting with the annihilation process through registering the

photons at the scanner ring until the final image reconstruction.

in a nuclear reaction that transforms them to e.g. 11
6 C. Such a cyclotron is shown in figure 1.3.

1.3 Quality Limitations

The spatial resolution of PET is limited by the physical characteristics of the radioactive decay

and the annihilation, but also by technical aspects of the coincidence registration and by external

sources of errors, e.g. object movement during the examination. While the range of the positron

and its angular deviation limits the resolution to 0.5-3 mm [LH99], the resolution achieved in

modern scanners is about 5 mm. The following sections give a short description of the different

sources of errors and how they can be reduced.

1.3.1 Physical Influences

1.3.1.1 Positron Lifetime and Angular Deviation

The location where the positron was emitted by the radioactive nucleus is the point of interest.

After emission, the positron interacts with electrons of the surrounding matter and moves ran-



4 Chapter 1. Positron-Emission-Tomography

Figure 1.3: Cyclotron for production of 11C, 13N , 15O, 18F

Probes Usage

H15
2 O, 15O-buntanol, 11CO, 13NH3 ... hemodynamic parameters

18F -FDG, 15O2, 11C-palmitic acid ... substrate metabolism
11C-leucine, 11C-methionine, 11C-tyrosine protein synthesis
11C-deprenyl, 18F -deoxyuracil ... enzyme activity
11C-cocaine, 13N -cisplatin, 18F -fluorouracil ... drugs
11C-raclopride, 11C-carfentanil, 11C-scopalamine receptor affinity
18F -fluorodopa, 11C-ephedrine ... neurotransmitter biochemistry
18F -penciclovir, 18F -antisense oligonucleotides ... gene expression

Table 1.1: Some tracers and their application in Positron-Emission-Tomography

domly away from the original decay location. The positron range depends on the initial energy

of the positron and on the kind of ambient matter it has to pass through (e.g. 1.1 mm in H2O

for 11
6 C).

Further influence on the spatial resolution has the angular deviation of the opposed photons.

On annihilation the positrons still have a residual energy of approx. 10keV and the conservation

of momentum causes the γ-quanta to be emitted diametrically (180◦) with an angular deviation

of ±0.5◦.

In contrast to the influence of the positron range, the effects of the angular deviation can

be limited by reducing detector distances in the PET scanner, as it is done in small animal

scanners.3

3e.g. For a detector radius of 100cm the deviation of the coincidence line is ≈ 2.6mm [Keh01].



1.3 Quality Limitations 5

1.3.1.2 Photon Attenuation

The two annihilation photons are attenuated while traversing through the examination object.

The attenuation can amount up to 95% in a human body examination4 [Keh01]. However, it

can be measured by a transmission scan where a γ-radiating source like 68Ge is used to irradiate

the object from the outside. In addition to this transmission measurement a blank scan without

any object in the FOV is performed.

Taking the data of the transmission scan and the blank scan, allows to compute the overall

photon attenuation and therefore compensate its effects:

PhotonAttenuation =
TransmissionScan

BlankScan

1.3.1.3 Isotope Lifetime

The radioactive decay of the injected nuclides causes the counted coincidences to decrease expo-

nentially with time. This is normally compensated to obtain the intensity (A0) at the beginning

of the acquisition. The decay rate depends on the lifetime of the isotope and a correction factor

(f) can be calculated according to

f =
Nc

Nm
=

(te − ts)A0

te∫
ts

Atdt

(1.2)

where Nc is the number of corrected counts, Nm the number of measured counts, A0 the activity

of the radio nuclide at start time (ts), te the end time and At = A0e
−λt the radioactivity at a

specific time [VBTM03].

1.3.2 Scanner Influences

1.3.2.1 Random Coincidences

The time window that the coincidence electronic applies does not only contain true coincidences.

It happens that random coincidences are counted because two quanta that do not originate

from the same annihilation event, arrive within the same time window. Such a situation can

also happen if a quantum from outside the Field Of View (FOV) arrives at the same time like

another one5. Random coincidences are calculated by

Nrand = 2τNiNj (1.3)

where Ni and Nj are the γ-rates (Singles) of both detectors and τ the length of the time window.

Random coincidences can also be measured directly by applying a second time window where

the signal of one detector is delayed, so that simultaneous detections in the two time windows

is a direct measure of the random events [HHPK81].
4head acquisitions have an attenuation of approx. 75-80%.
5often the bladder of a patient accumulates lots of radioactivity and produces random coincidences.



6 Chapter 1. Positron-Emission-Tomography

1.3.2.2 Scattered Coincidences

Within an electron-free environment the emitted γ-quanta do hit the detectors straight from the

annihilation source position. In reality the photons interact with electrons (Compton Scattering)

so that a photon hits the wrong detector and is assigned to a false LOR. Even if the probability

of Compton Scattering is very high6, the resulting angle and therefore the probability that a

wrong detector is being hit is relativly low [Dav55].

During this scattering the photons loose some of their energy which allows to filter out those

coincidences by setting energy limits for events to be accepted. Unfortunately, the average energy

loss is low so that this filtering is only useful for strongly scattered photons. Photons loosing

only a small amount of energy during the scattering, can however be calculated by applying

mathematical methods [WWH88].

Finally, the real coincidences (Trues) are calculated by using the formula

Ntrue = Ntot −Nrand −Nsc (1.4)

where Ntot are the counted coincidences (Prompts), Ntrue the Trues, Nrand the Randoms and

Nsc the scattered coincidences.

1.3.2.3 Variable Detector Sensitivity

Because of differences between the photo multipliers and scintillator crystals, each detector has

a different sensitivity. If kept uncorrected, those differences do result in an inhomogeneous

distribution of the counted coincidences. By performing a scan with a low-activity phantom7

radiating γ-quanta, it is possible to build a map of this inhomogeneous distribution which then

is merged with the data from the final scan to compensate those differences. This is also referred

to as Normalization.

1.3.2.4 Electronic Dead Time

The electronic dead time describes the limitation that electronic components process events only

at a limited rate. The same applies for components of the PET scanner where it happens that

the coincidence processor is busy during the arrival of other coincidences and is not able to

measure them. The event rate dependence of the dead time can be measured by performing

a phantom scan with an initially high activity. With help of this measurement the dead time

influence is compensated within the final image reconstruction.

1.3.2.5 Crystal Characteristics

The scintillator crystals transform parts of the energy deposited by the γ-quanta into visible

light. This conversion depends on the material characteristics of the crystals like density, light
6≈ 50% during a brain examination [Keh01].
7a phantom is a radiation source for calibration and study purposes.



1.3 Quality Limitations 7

efficiency, decay time and atomic number. Some common used crystal materials are listed in

table 1.2.

Material Density rel. light efficiency Decay time Hygroscopic Atomic number

[g/cm3] [%] [ns]

NaI 3.67 100 230 yes 50

BGO 7.13 15 300 no 75

Y AP 5.37 40 25 no 36

LSO 7.4 75 40 no 66

GSO 6.71 23 60 no 59

CsF 4.64 6 5 yes 52

Table 1.2: Physical characteristics of common scintillator crystals [Pie99]

Geometry and arrangement of those scintillator crystals is also important for the coincidence

recognition. As the crystals are highly packed, it happens that when a photon hits a crystal

with an angle different from 90◦ it traverses the first crystal and is absorbed by a neighboring

one. This is the reason why typically the best resolution of a PET scanner can be achieved

within the center of the FOV, where all LORs hit the crystals under 90◦. However, such effects

can be lowered by reducing the crystal lengths.

1.3.3 External Influences

1.3.3.1 Organ Movement

Since PET is being used to retrieve metabolic information on a living organism, the normal

object of interest is, in contrast to static objects like phantoms, an object that has a dynamic

behavior. Sometimes this is a volitional dynamic behavior8, but more often it degrades the final

results of the examination so that those dynamics need to be compensated.

Periodic movements like those from heart or respiration can be compensated by recording the

periodicity with tools like an electrocardiogram (ECG) or respiration belt, and by mapping the

different phases of the motion to different time frames (gates) to summarize only the coincidences

at a specific position of the organ. Whereas heart examinations with help of a ECG are supported

natively by most of the modern PET scanners, respiratory movements or other organ movements

are not supported and cannot be compensated easily.

1.3.3.2 Patient Movement

It cannot be expected that patients keep still during the data acquisition of a PET examination

of up to two hours, especially if they have diseases like Parkinson or Epilepsy, where uncon-
8in case of a blood flow examination.



8 Chapter 1. Positron-Emission-Tomography

trolled and unpredictable movements are unavoidable. Even if patients are supported with

special devices like vacuum cushions, such movements cannot be totally avoided and have to be

compensated by other means. The impact of such movements on the resulting image quality is

often underestimated, and since the resolution of the scanners is improving, the importance of

compensating such movements is steadily increasing.

1.4 Quantification

To draw quantitative conclusions about the metabolic function of an examined organism it is

necessary to analyze the measured radioactive level in a specific Region Of Interest (ROI). A

scale factor calculation allows to map the counted coincidences back to a radioactive level. This

factor is determined by using a scan of a phantom of which the specific activity is known and the

difference to the actually measured coincidences is calculated. With this method it is possible

to provide quantitative statements in Becquerel/cm3 for a specific ROI.



1.5 The PET Scanner - ECAT EXACT HR+ 9

1.5 The PET Scanner - ECAT EXACT HR+

During the studies for this thesis a PET scanner was used to perform tests and analysis of the

implementation of the correction algorithms. This scanner, as shown in figure 1.4, was developed

by CTI and Siemens in 1996 and supports 2D and 3D body examinations.

The γ-sensitive scintillator crystals of this tomo-

Figure 1.4: EXACT HR+

PET scanner

graph are combined into groups of 8× 8 crystals, that

form a detector block that is connected to 2× 2 photo

multipliers. 72 of these detector blocks form a detector

ring and four of these rings are arranged in axial dir-

ection, resulting in the total number of 18432 BGO

crystals, as shown in figure 1.5.

The scanner supports the extraction of 0.8 mm

thick septa rings for a 2D measurement. If running

in 2D mode, those 66.5 mm long barriers are physic-

ally restricting the maximum possible ring difference

within the detector system, thus limiting the influence

of scattered coincidences. In contrast, if running in 3D mode (cf. figure 1.6) the overall sensit-

ivity of the PET scanner is increased by a factor of 3-5 [Keh01], so that the injected dose can

be decreased, the examination time reduced or the statistical accuracy improved.

Detector Block

Detector Rings

Scintillator
Crystals

Photo
Multiplier

Figure 1.5: Detector system layout showing a detector block and 4 detector rings.

By assuming that coincidences of a point source which is located exactly in between two

neighbouring detectors are not recognized, interleaving describes a technique to increase the

possible angular combinations during sorting LORs into their respective bins9. This is illustrated

in figure 1.7. It increases the angular combinations such that the scanner accepts 576 different

9Here a bin refers to a single element in a two dimensional histogram.



10 Chapter 1. Positron-Emission-Tomography

Detector
Block 1

Detector
Block 2

3D 2D

Septa retracted Septa extracted

Figure 1.6: PET scanner 2D/3D Mode principles

angles on one ring unit with 576 crystals instead of just the normal 288. However, those 288

additional interleave angles are combined with the other ones so that the final dataset still

consist of 288 angles [Sie96]. Due to this technique the resolution especially near the center of

the FOV is increased.

In addition, the scanner provides a method to reduce the amount of data an acquisition

produces. The so called angular compression10 allows the scanner to summarize successive

angles to one logical unit and is per default set to mash 2 so that in combination with the

interleaving the resulting dataset only consists of 144 angles per layer. Unfortunately, this does

not only decrease the amount of data but also the resolution within the outer areas of each

plane.

Figure 1.7: Interleaving Technique

There exist two different types of planes, direct and indirect ones (cf. figure 1.8). The

combination of accepted angles within the direct and indirect layers is called a Span level where

a Span7 (3 + 4) refers to three direct plus four indirect layers. A layer itself consist of LOR

combinations of one or more detector rings. By increasing the axial accepted angle of LOR

combinations, the sensitivity of the scanner can be increased. However, it also leads to a decrease

10also known as mashing



1.5 The PET Scanner - ECAT EXACT HR+ 11

of the resolution within the outer ranges of the layers. Thus, this technique is understood not

only to take a LOR as a single coincidence line but to consider a LOR a logical volume of

coincidences.

Span 3 Span 5 Span 7 Span 9

Direct

Indirect

Axial direction

Figure 1.8: Axial Acceptance Angle

As infinitely increasing the Span causes too much of a resolution loss, the scanner divides

the dataset into different segments, where each segment is scanned with the same Span, but

includes differently inclined LORs as shown in figure 1.9. The number of segments is defined by

the maximum available ring difference (RDmax) and Span and can be calculated by

Nseg =
2×RDmax + 1

Span
(1.5)

where the number of segments has always to be odd, and is per default 5 for the ECAT EXACT

HR+ scanner with Span 9.

Direct

Indirect

Segment +1 Segment 0 Segment -1

Figure 1.9: Sinogram Segments for Span 9 and RDmax = 13

To illustrate the connection between the Span, the maximum ring difference and the separ-

ation into several segments Michelograms are used, developed by Christian Michel (Université

Catholique de Louvain, Belgium) and CTI [Sie96], where the axes of the diagram enumerate

the different detector rings so that each point within the diagram stands for a possible ring

combination. The connected points are referring to combined LORs where the diagonal of each

segments shows the different layers within the segment. Such a Michelogram is given in figure

1.10 and the default parameters of a 2D and 3D scan are listed in table 1.3.



12 Chapter 1. Positron-Emission-Tomography

Segment +1

9

0
1
2
3
4
5
6
7
8

11
10

12
13
14
15

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

19 20 21 22 23 24 25 26 27 28 29 30 31

Segment +2

S
eg

m
en

t 
-1

S
eg

m
en

t 
-2

Segme
n
t

 0

17-9+1 = 9 (Span)

26 - 4 = 22 (RDmax)

Figure 1.10: Michelogram for Span 9 and RDmax = 22 [Keh01]

Mode Nseg Span Segment RDmin RDmax RD Planes

2D-Measurement 1 15 0 -7 7 0 63

3D-Measurement 5 9

0 -4 4 0 63

±1 5 13 9 53+53

±2 14 22 18 35+35

Table 1.3: Default parameters of a 2D/3D measurement



Chapter 2

Coincidence Position Correction

The unavoidable patient movement during the PET acquisition has impacts on the quality of

the examination. As scanner resolutions are being steadily improved, any movement which is

comparable to the size of the intrinsic spatial resolution causes a blurring and therefore a loss

of information. Therefore, corrections of such movements have to be performed and recent

studies show that the herein presented coincidence position correction is a appropiate technique

to compensate such movements. The following sections discuss this techniques fundamentals

which are used to compensate the patient’s head movement [Büh03].

2.1 Different Coordinate Systems

The PET scanner and the motion tracking system have distinct coordinate systems. As il-

lustrated in figure 2.1, a point ~P that moved during the acquisition to point ~Q has different

coordinates in the respective systems. To use the motion tracking data for correcting patient

movement, it is necessary to be able to convert movements measured in the coordinate system

CStrk of the tracking camera to the scanner coordinate system CSpet and vice versa.

As the coincidence data of the PET scanner have to be corrected, the measured transform-

ation within CStrk has to be converted into the corresponding transformation in CSpet, such

that the position of coincidences can be corrected within the scanner’s coordinate system.

2.1.1 Cross-Calibration

Being able to map the coordinates of a given point ~P to the corresponding coordinates ~P ′ in

another system is called cross-calibration. Two systems are cross-calibrated to each other if both

the rotation matrix T̂cc and the translation vector ~tcc which transform a vector ~P in coordinate

system CStrk to a vector ~P ′ in the system CSpet, are known:

~P ′ = T̂cc · ~P + ~tcc (2.1)

13



14 Chapter 2. Coincidence Position Correction

PET scanner
Tracking
Camera 1

Tracking
Camera 2

PET scanner
Coordinate Axes

Tracking System
Coordinate Axes

!Q

!P

X
Y
Z

(CSpet)

(CStrk)

Figure 2.1: The different coordinate systems involved in movement correction. A point
~P that moved to point ~Q has different coordinates in both systems, thus a

calibration of both coordinate systems is necessary to map the movement

between the systems.

In order to apply the measured spatial transformations in CStrk for correction of the coincidences

in CSpet, the cross-calibration (T̂cc, ~tcc) between those two systems have to be determined prior

to the movement correction. Therefore, a simultaneous measurement of a set of spheric bodies

within the FOV of the tracking system and PET scanner is performed, which allows to measure

the orientation of the systems to each other, i.e. to compute T̂cc and ~tcc.

For our motion tracking system and PET scanner this measurement is accomplished through

a transmission scan where an object, that can be tracked by the motion tracking system, is fixed

within the FOV of the scanner during the scan. The object does not only have to be visible to the

tracking system, but also need to cause a significant attenuation during the transmission scan

so that it is visible in the final PET image and can be mapped onto the coordinates provided

by the tracking system.

This object has to provide a minimum of four motion-trackable bodies so that the motion

tracking system outputs four different vector coordinates ~P1, ..., ~P4. This requirement is based

on the mathematical procedure where by solving the system of equations (2.2), T̂cc and ~tcc can



2.1 Different Coordinate Systems 15

be computed with the required accuracy.

P ′
1x

= Tcc1,1 · P1x + Tcc1,2 · P1y + Tcc1,3 · P1z + tccx

P ′
1y

= Tcc2,1 · P1x + Tcc2,2 · P1y + Tcc2,3 · P1z + tccy

P ′
1z

= Tcc3,1 · P1x + Tcc3,2 · P1y + Tcc3,3 · P1z + tccz

...

P ′
4x

= Tcc1,1 · P4x + Tcc1,2 · P4y + Tcc1,3 · P4z + tccx

P ′
4y

= Tcc2,1 · P4x + Tcc2,2 · P4y + Tcc2,3 · P4z + tccy

P ′
4z

= Tcc3,1 · P4x + Tcc3,2 · P4y + Tcc3,3 · P4z + tccz

(2.2)

~P ′
i is a position vector of object i within the PET attenuation image and ~Pi the position of the

same object, but obtained from the data of the motion tracking system.

By using algorithms like Singular Value Decomposition [PTVF92] the system of equations

(2.2) can be solved so that with the homogeneous coordinate based matrix-vector multiplication
P ′

x

P ′
y

P ′
z

1

 =


Tcc1,1 Tcc1,2 Tcc1,3 tccx

Tcc2,1 Tcc2,2 Tcc2,3 tccy

Tcc3,1 Tcc3,2 Tcc3,3 tccz

0 0 0 1

 ·


Px

Py

Pz

1

 (2.3)

vector ~P ′ within CSpet can be computed from ~P in CStrk or vice versa.

As the two systems are normally located at fixed positions, such a cross-calibration has to be

performed only in routinely based intervals to avoid drifting effects, or in case that one system

changes its coordinate system, e.g. by recalibration of the motion tracking system.

2.1.2 Spatial Movement

Patient movement during acquisition is a spatial transformation and can be expressed by

~Q = T̂mc · ~P + ~tmc (2.4)

where ~P is the initial position, T̂mc the rotation matrix, ~tmc the translation vector and ~Q the

final position.

The used motion tracking system directly provides the rotation matrix and translation vector

of the movement so that, after applying the cross-calibration transformation of section 2.1.1 the

position of ~P ′ (cf. equation 2.3) can immediately be shifted to ~Q′. The combination of cross

calibration and spatial movement can be expressed in one equation:
Q′

x

Q′
y

Q′
z

1

 =

(
T̂ccT̂mcT̂

−1
cc −(T̂ccT̂mcT̂

−1
cc ) · ~tcc + T̂cc · ~tmc + ~tcc

0 1

)
·


P ′

x

P ′
y

P ′
z

1

 (2.5)



16 Chapter 2. Coincidence Position Correction

2.2 Position Correction Procedure

Single coincidence position correction requires that every coincidence is recorded separately.

Modern PET scanners like the EXACT HR+ achieve this in listmode, where all coincidence

events are stored as 32bit encoded words (cf. section 3.3.2.1). Those words are separated into

time words and event words where an event word is the representation of a single LOR and a

time word an absolute time information since scan start.

!Q2

!P2

!P1
!P ′

1

!P ′
2

!Q1

x

y

z

1. Physical Location Calculation :

2. Spatial Correction :

3. Intersection Calculation :

4. Discrete Value Calculation :

RE, AN, RIA,B → !P1,2

!P1,2 → !Q1,2

!Q1,2 → !P ′
1,2

!P ′
1,2 → RE′, AN ′, RI ′

A,B

Trans-Axial Sagittal

Figure 2.2: Image illustrating the different steps of the position correction procedure.

After having transformed the discrete values of the raw acquisition data into

absolute physical location (1), the spatial transformation is applied (2). Af-

terwards the new positions are mapped onto the scanner circumference (3)

and converted to discrete scanner values again (4). Those are then used and

finally sorted into a sinogram file.

As shown in figure 2.2, coincidence position correction can be divided into four different steps

which we discuss in the following paragraph. Scanner parameters relevant to the procedure are

summarized in table 2.1. The last three items are discrete parameters (RE,AN, RIA,B) which

are encoded in the event words of the listmode stream.

1. Physical Location Calculation (RE,AN, RIA,B → ~P1,2)

Before the LOR dependent data of a listmode file can be used to correct the position of a

coincidence, discrete values of the listmode event words have to be converted to absolute

physical values within the PET scanner coordinate system.

In case of the EXACT HR+, a listmode event word consists of four discrete values RE,

AN and RIA,B which unambiguously define a LOR. They can be used to compute the two



2.2 Position Correction Procedure 17

Parameter Notation EXACT

HR+

detector ring radius R 41 cm

minimum Z-axis value of axial FOV z0 7.76 cm

axial width of planes dz 0.485 cm

trans-axial FOV angle β 45◦

number of radial bins NRE 288

number of angular bins NAN 288

radial bin number RE 0...287

angular bin number AN 0...287

detector ring numbers RIA,B 0...31

Table 2.1: Coincidence position correction relevant scanner parameters. The last three

items are encoded within the provided event words during listmode of the

EXACT HR+ scanner.

endpoints ~P1,2 of the LOR on the crystal rings:

~P1,2 =


−ρ · sinα± r · cos α

ρ · cos α± r · sinα

z0 + (RIA,B + 0.5) · dz

 (2.6)

where

α =
AN · π
NAN

ρ = R · sin
(

(RE + 0.5) · 2β

NRE
− β

)
r =

√
R2 − ρ2

Here α, ρ and r are physical quantities which are temporary used to calculate the endpoints.

Furthermore, it is assumed that a LOR is the connecting line between the centers of the

two involved crystal detectors.

2. Spatial Correction (~P1,2 → ~Q1,2)

After the physical endpoints of a LOR have been calculated, the spatial LOR correction

is applied by transforming both points ~P1,2 with equation (2.5) using the corresponding

transformation information. This results in the two intermediate points ~Q1 and ~Q2 which

represent the transformed endpoints.

3. Intersection Calculation ( ~Q1,2 → ~P ′
1,2)

In the next step, the intersection points ~P ′
1,2 with the detector ring of the line through



18 Chapter 2. Coincidence Position Correction

~Q1,2 have to be determined. The coordinates of ~P ′
1,2 can be calculated from

~P = ~Q2 + q · ( ~Q1 − ~Q2)

P 2
x + P 2

y = R2
(2.7)

which results in a quadratic equation for q

0 = q2 · (dx2 + dy2) + 2q · (Q2x · dx + Q2y · dy) + (Q2
2x

+ Q2
2y
−R2)

dx = Q1x −Q2x

dy = Q1y −Q2y

(2.8)

with two possible solutions q1,2 so that ~P ′
1,2 can be computed by

~P ′
1 = ~Q2 + q1 · ( ~Q1 − ~Q2)

~P ′
2 = ~Q2 + q2 · ( ~Q1 − ~Q2)

with q1 > q2 (2.9)

4. Discrete Value Calculation ( ~P ′
1,2 → RE′, AN ′, RI ′A,B)

Finally, ~P ′
1,2 are converted into listmode compatible discrete values. This is done by the

inverse of equation (2.6):

RE′ = int

(
(arcsin(ρ′/R) + β)

2β
·NRE

)
AN ′ = int

(
α′ ·NAN

π

)
RI ′A,B = int

(
z′1,2 − z0

dz

) (2.10)

where

ρ′ =
P ′

2x
· dy − P ′

2y
· dx√

dx2 + dy2

α′ = arctan
(

dy

dx

)
z′i = P ′

iz

with
dy = P ′

1y
− P ′

2y

dx = P ′
1x
− P ′

2x

(2.11)

and int() is the integer fraction of a floating point value.

Before such transformed LORs can be sorted into a sinogram or appended to a separate listmode

file, a number of corrections have to be performed as described below.

2.2.1 Problems and Solutions

When spatially transforming LORs, neglecting scanner characteristics like variable detector

sensitivities, the trans-axial bin widths within one plane and the limited FOV will produce

artifacts in the final data. Therefore, a thorough correction of these effects is mandatory.



2.2 Position Correction Procedure 19

2.2.1.1 Normalization Correction

As discussed in section 1.3.2.3, the detectors of a scanner have different sensitivities which

are compensated by Normalization during the reconstruction. Therefore, the sensitivity of the

detectors which originally detected the event is not the same as the one of the detectors computed

from equation (2.10) for the corrected LOR. This difference results in incorrect normalization

during reconstruction and produces typical ring-artifacts in the final image, cf. figure 2.3.

without
Normalization 
Correction

with
Normalization 
Correction

ring artifacts

Figure 2.3: Images showing the impact of an uncorrected normalization during a move-

ment correction. If kept uncorrected typical ring artifacts within the final

image show up, which is caused by the different detector sensitivities of a

PET scanner.

These artifacts can either be eliminated by modifying the normalization used during image

reconstruction, or by calculating correction factors to each registered LOR so that the standard

normalization can be used despite movement correction.

By assuming a mash value of zero and span of one (cf. section 1.5) each logical LOR consists

of one possible detector combination. Therefore, the normalization factor η(i,j) of a LOR consists

of two detector efficiencies, and is calculated by

η(i,j) = ηi · ηj · φ (2.12)

where ηi,j are the single detector efficiencies and φ a geometric factor which describes the influ-

ence of the angle of incidence of a γ-quantum on the detection efficiency [CGN95], and will not

further be discussed here.

If we now transform a LOR from detector pair (k, l) via the methods described in section 2.2,

into a LOR at pair (i, j) the normalization correction factor is:

f(k,l),(i,j) =
η(k,l)

η(i,j)
(2.13)

Weighting each corrected event with this factor allows to use the default normalization during

reconstruction, as desired.



20 Chapter 2. Coincidence Position Correction

2.2.1.2 LOR Discretization Correction

The assumption that a single LOR is the connecting line between the centers of two detectors

leads to problems during the movement correction.

movement

before 
Transformation

after
Transformation

empty bin

overfull
binLOR

Figure 2.4: Trans-axial plane of a scanner showing the different bin widths due to the

radial placement of the detectors. After considering a spatial transformation,

detector-center-aligned LORs are moved so that either empty bins or overfull

bins are produced. This causes artifacts in the final reconstructed image, if

kept uncorrected.

The sketch 2.4 of a trans-axial plane of a PET scanner illustrates the problem. The left

panel shows the initial situation where the LORs connect the centers of two opposite detectors.

The width of the bins varies depending on the distance of the LOR from the center of the FOV.

The right panel shows the same trans-axial plane but with spatially transformed LORs. By

concentrating on the dotted LORs, the drawing illustrates that due to the spatial transformation

the left side of the FOV carries some LORs that fell into the same bin (overfull bin), whereas

the right side contains some empty bins which leads to artifacts within the reconstructed image.

Referring to figure 2.5, that problem can be avoided by considering LORs as a volume

confined by the planes connecting the edges of two detector crystals (rod with rectangular

cross-section), rather than a simple connecting line between the detectors. In this case, a

transformation can not lead to uncovered bins (except for the fringes, cf. section 2.2.1.3).

However, such a transformed LOR is generally not exactly aligned to a single bin and does

intersect with several of them. In order to assign such an intersecting LOR to a bin, a weighting

factor has to be calculated which is proportional to the amount of overlap between a LOR and

a particular bin.

Computing this overlap is time consuming. Therefore, a simplified scheme is used, assuming

a constant bin width in axial direction.



2.2 Position Correction Procedure 21

movement

1:1
weighted
bin

LOR 
volumes

before 
Transformation

after
Transformation

Figure 2.5: By considering transformed LORs to be volumes instead of lines connecting

the center of two detectors, the LOR discretization correction is able to calcu-

late weights on each transformed LOR. This way overfull bins, cf. figure 2.4,

are prevented whereas empty bins at the outer ranges of the FOV have to be

compensated by an additional Out-of-FOV correction (see section 2.2.1.3).

2.2.1.3 Out-of-FOV Correction

Movement of a LOR leads to uncovered bins at the fringes, even if a LOR discretization cor-

rection was performed. This happens because the acceptance range for LORs is restricted by

the maximum accepted ring difference1 and the maximum accepted radial distance of a PET

scanner. Therefore it happens that LORs fall out of this Field-of-View (FOV) during spatial

transformation and are lost counts. On the other hand regions, which in the measured position

are outside of the FOV, are moved into the FOV of the scanner after correction and cause the

sinogram to carry empty bins (missing counts). Whereas the lost counts do not affect the recon-

structed image, the missing counts in the second case lead to an underestimation of the activity

in the affected regions, as shown in the sum projections in figure 2.6.

In order to recognize if a transformation causes a LOR to result in a missing count, this

LOR has to be transformed with the inverse of the transformation and tested whether it is still

within the FOV of the scanner or if it is a missing count. As each new transformation causes

different LORs to create missing counts, the underestimation within a sinogram bin (b) can

be compensated by accumulating the durations dt(n, l) of all affected transformations (n) to a

factor

toutFOVb
=

tfe∑
n=tfs

dt(n, l) (2.14)

for each LOR (l), where (tfs...tfe) are the boundaries of a specific time interval (i.e. frame) in a

1which is e.g. 22 for a ECAT EXACT HR+ scanner.



22 Chapter 2. Coincidence Position Correction

without
Out-of-FOV Correction

with
Out-of-FOV Correction

area with empty binsz

x0

Figure 2.6: Sum projections showing the impact of the Out-of-FOV correction. The left

projection shows the underestimation caused by empty bins due to the spatial

transformation of the LORs. In contrast, the right projection shows the same

acquisition data, but after having processed the Out-of-FOV correction during

the movement correction.

dynamic PET study. A frame-based Out-of-FOV correction factor foutFOVb
is calculated under

the assumption that the count rate is constant during this frame2:

foutFOVb
=
(

tframe

tframe − toutFOVb

)
with tframe = tfe − tfs (2.15)

This factor is then used to scale the count rate of the sinogram bin:

Ncorrb
= Nnormb

· foutFOVb
(2.16)

where Ncorrb
is the corrected count rate within bin (b) and Nnormb

the count rate after the

normalization correction (see 2.2.1.1).

2.3 Transformation Discretization

The ARTtrackTMmotion tracking system used in this thesis (cf. section 2.4) provides motion

information with sampling rates of up to 60Hz. This requires to distinguish between significant

movements that have to be spatially corrected and movements that can be neglected. The

acceptable threshold depends on the field of application of such a tracking system and in case

of the usage in PET it is moreover dependent on the examined area and required resolution

of the performed study. One must therefore be able to dynamically define, depending on the

PET examination, which patient movement is to be significant enough to have to be correction.

Figure 2.7 illustrates such a selection of relevant movements. It shows a short sequence of head

tracking data with vertical lines confining areas of a persistent transformation is shown.

This selection is determined by considering the surface of a sphere, which is centered at the

origin of the PET system. For each motion information this sphere is then spatially transformed

like discussed in section 2.1.2 and a factor dmax, which is the maximum displacement of a point

on the surface of the sphere, is computed with iterative mathematical methods like the Downhill
2which is not true, but is in many practical cases a valid approximation.[Büh03]



2.3 Transformation Discretization 23

borders of 
persistent 
transformations

maximum 
displacement

Figure 2.7: Plot showing the maximum displacements dmax of a sphere that is computed

for each transformation information received from the tracking system. It

shows that, as soon as 4dmax > 1.0 mm a new persistent transformation

is considered, thus allowing to only use those transformation which cause a

significant movement.

Simplex Method [PTVF92]. A maximum threshold for the changes of dmax is used to decide

whether a transformation is relevant enough or if it can be neglected.



24 Chapter 2. Coincidence Position Correction

2.4 ARTtrackTMMotion Tracking System

During the studies of this thesis, a commercial motion tracking system has been used to measure

the movement of a patient. The system consists of two cameras equipped with CCD imaging

sensors.They are mounted behind the PET scanner, and are pointing into the scanner tube, cf.

figure 2.8.

Mounted ARTtrack
cameras 

View through
the scanner tube

Figure 2.8: The ARTtrackTMmotion tracking system installed at the PET center Rossen-

dorf consists of two infrared cameras. They are located behind the scanner

tube and are mounted behind the PET scanner, pointing into the scanner

tube.

Infrared light flashes integrated in each camera illuminate the tracking area periodically. To

be able to recognize a movement within the cameras field of view, infrared light reflecting objects

(i.e. markers) have to be used. Those objects are passively reflecting the infrared light back

to the cameras where an embedded Linux system analyzes the produced images and deduces

the 2D-centers of the markers in the camera specific image plane. To prevent interference of

simultaneous emitted flashes, both systems are controlled by an external synchronization source.

The tracking information is transmitted via Ethernet to a central computing unit where, due to

the stereoscopic setup of the cameras, the full 3D positions of the markers is computed. However,

to be able to provide the complete 3D movement information, the tracking system has to be

used with a body as the tracking object.

Such a tracking body, as shown in figure 2.9, consists of a fixed setup of several spherical

markers where all distances between the markers are different so that the tracking system can

identify every single marker. The figure shows a special body that has been developed for PET

brain investigations, where five markers are mounted to a glasses frame and are fixed to the

patients head. By tracking all markers of the body, the motion tracking system computes the

location of the center of gravity (CG) of the body and the rotation and translation components



2.4 ARTtrackTMMotion Tracking System 25

relative to a calibration reference position. This information is then provided in binary or text-

based format (cf. section 3.3.2.3) within an application running on the controlling computer

system, and can also be sent to other systems via UDP network datagrams.

6D-body with 5 
markers

Body attached to 
patient's head

Figure 2.9: During a PET head examination, a special 6D-body is attached to the head

of a patient. With the 5 spherical markers available at the body object,

the motion tracking system is able to provide spatial movement information

during an examination.

The accuracy of the tracking system depends not only on the setup conditions like the posi-

tion of cameras or the tracked volume, but also on the necessary calibration of the system: The

coordinate calibration (Room Calibration) of the system and the calibration of the bodies (Body

Calibration). First, the coordinate system of the cameras themselves has to be calibrated. This

is done through the room calibration where a fixed and unique body (calibration angle) has to

be positioned within the field of view of both cameras and another unique body (called wand)

has to be moved during an initial calibration (cf. figure 2.10).

Due to this setup, the motion tracking system can calibrate its coordinate system depending

on the measured differences during this process. In addition, each tracking body has to be

calibrated where the body itself has to contain markers with different distances to each other so

that the tracking system can compute the distances of each marker to another one and use this

combination of markers as a single unique body. With a standard setup and calibration of the

ARTrack system, the achievable spatial resolution is below 1 mm and the maximum sampling

rate can be tuned up to 60Hz.



26 Chapter 2. Coincidence Position Correction

Special bodies for 
calibration of ARTtrack.

Figure 2.10: Special type of bodies are using during the room calibration of the

ARTtrackTMsystem. While one unique body (angle) has to be positioned

within the FOV of the cameras, another body (wand) will be moved during

the calibration. Due to the measured differences in this setup, the motion

tracking system is able to calibrate its coordinate system.



Chapter 3

Implementation Aspects

After the discussion on the fundamentals of PET and coincidence position correction, the fol-

lowing chapter will concentrate on several aspects relevant for an implementation of those fun-

damentals. By discussing the existing scientific implementations, outlining user and developer

requirements and by analyzing external interfaces that are common in PET, this chapter clarifies

the different steps that were taken for a development of such a movement correction application.

3.1 Existing Solutions

The previously discussed coincidence position correction algorithm was initially implemented

with several small programs and script based tools. The main correction algorithms were imple-

mented by an experimental application that was written in unoptimized C source code (called

trans lm).

Study and analysis of this implementation showed that the correction algorithms produce

the expected results [Büh03], but revealed that there are computer science related issues that

have to be solved before this new technique is used for routine application:

• the given implementation of the correction algorithm yields computation times that exceed

the overall duration of a PET examination by a factor of ≈10, which is not tolerable,

• amount and complexity of the different software tools and applications involved limit the

user group to scientists only,

• the current implementation is limited to static PET studies, but is required to support

dynamic (multi-frame) studies, which are common with routine PET examinations,

• the whole process of movement correction involves several partial steps by using different

software tools, which makes its application error prone,

• the cross-calibration of the tracking system and PET scanner has to be performed within

a separate application by manual invocation of several script-based tools, and

27



28 Chapter 3. Implementation Aspects

• data acquisition with the motion tracking system and preprocessing of this data are done

manually by using different software utilities and have to be automated.

3.2 Requirement Analysis

One important part of a software development process is the specification of requirements for the

potential groups of users and how their needs can be satisfied. As there are different groups of

expected users of a software application, a well-defined implementation has to suit the different

needs of each group.

In our case there are three groups of potential users. The main group are the medical

technicians who carry out the PET examinations. The second group are scientists (generally

physicists) who are interested in improving and administrating the movement correction pro-

cess. Finally, the third group are generally computer scientists who are interested in reusing or

enhancing the implementation.

3.2.1 User Requirements

The primary user group, medical technicians, are familiar with the different steps of performing

a PET acquisition. They are trained in using different software solutions to perform the PET

examination from data acquisition to image reconstruction. Figure 3.1 summarizes these steps

within a schematic drawing.

By introducing a new step into this process, it is important not only to carefully review

the requirements of the personnel that is routinely performing those examinations, but also to

account for the requirements of the involved scientists. In contrast to the medical technicians,

the scientists that are using the application have to be provided with a more advanced and

flexible setup that allows the usage of such an application for individual studies.

The following user requirements for a routine-based implementation have to be reviewed:

• loading PET coincidence data from 32bit listmode files1,

• intuitive Graphical User Interface (GUI) with the possibility to switch between a novice

and expert mode,

• batch-able Command-Line Interface (CLI) with all common features that the GUI provides,

• movement correction of dynamic (multi-frame) 3D PET studies,

• direct data acquisition of motion information from the tracking system,

• enhanced import and export functions to load and save all patient and study relevant data,

1The native PET acquisition data format, cf. section 3.3.2.1.



3.2 Requirement Analysis 29

Tracer 
injection

Transmission 
Scan

Emission Scan

Image 
Reconstruction

Movement 
Correction

Attenuation

Sinogram

Volume Image

insert

1

2

4

5

Figure 3.1: Illustration of the four main steps of a PET examination performed by medical

assistant technicians. By introducing a new step (movement correction) into

this process, several user dependent requirements have to be reviewed first.

• allow to save all information of a movement correction study, so that a reevaluation of the

data is possible at any time,

• optimized implementation such that a PET examination including a movement correction

is possible in routine use, and

• providing final motion corrected data in ECAT7 sinogram files2.

These issues require to find an adequate programming language, graphical framework and im-

plementation structure that allows to develop an application that is usable by an ordinary user,

but also flexible enough to enable a future development by other developers.

2The native data format of a Exact HR+ tomograph which is used prior to the image reconstruction, cf. section

3.3.2.2.



30 Chapter 3. Implementation Aspects

3.2.2 Developer Requirements

In contrast to former software development, developers today have different expectations on

modern software implementations. Whereas several years ago a software implementation was

generally only focused on a particular case, today’s software development more and more tends

to be highly flexible in design. Properties like reusability and portability are important for

modern software development as is support for well-defined standards like XML. This assures

that in future whole or parts of a software implementation can be used for, or easily be adapted

to new technologies.

The developer requirements for an implementation of the movement correction can be sum-

marized as followed:

• a standardized high-level programming language has to be used,

• Object Oriented Programming (OOP) paradigms like data encapsulation and an abstract

data types based implementation to ensure reusability have to be applied,

• a platform independent implementation to ensure future migration to other operating

systems and potential user groups has to be achieved,

• a multithreading, POSIX-threads (pthreads) compatible implementation to ensure optim-

ization on the utilized multiprocessor machines3 has to be assured,

• an Application Programming Interface (API) based developer documentation to ensure

further development has to be created,

• where applicable, standardized third-party libraries have to be used during development,

and

• Distributed Computing paradigms have to be considered so that an easy adaption is pos-

sible in future.

3.3 Specification

The specification of an implementation and the different involved interfaces, is an important

step during the software development process. It is necessary to perform a work-flow analysis

of the existing solution, taking the requirements into account and to define the boundaries

of the new implementation within this main work-flow. The transitions at these boundaries

form the external interfaces between different involved systems that have to be supported by

an implementation. Such a specification also has to cover internal interfaces like the chosen

programming language or the GUI framework so that within the implementation the right tools

are used to achieve the desired outcome.
3We used a 4x900MHz Sun SolarisTMv480 system during development.



3.3 Specification 31

Therefore, a work-flow analysis was performed during the specification process of this thesis.

By referring to the existing implementation discussed in section 3.1, the command-line tools and

applications involved in that movement correction implementation are summarized in figure 3.2.

calcsingles

trans_lm

dtrack_remcrosscal

select_tran
sformations

lm_sorter

Image
Reconstruction

Motion
Tracking
System

PET
scanner

Implementation 
Boundaries

Command-Line tool
for movement correction

Standarized 
PET Application

Figure 3.2: The work-flow of the existing movement correction implementation is shown.

It consists of the successive execution of several different applications and

command-line tools. In addition, the surrounding implementation boundary

illustrates the coverage of the new implementation lmmc.

In addition to the different tools that are used in the existing solution, the figure shows the

coverage of the new implementation with the involved transitions to other external systems, thus

specifying the required external interfaces. According to that, the transitions visible within the

implementation boundaries specify the internal interfaces that have to be supported.



32 Chapter 3. Implementation Aspects

3.3.1 Internal Interfaces

By referring to the different user and developer requirements of section 3.2, there exist different

demands on the internal interfaces for our movement correction implementation. The following

subsections will discuss the fundamental parts of this implementation and outlines the accounted

internal interfaces.

3.3.1.1 Programming Language

The correct choice of a programming language for a specific implementation depends on the field

of application, the operating systems involved, and on the particular requirements of a software

developer.The best programming language to choose for the movement correction was found by

evaluating the following criteria:

• portability,

• reusability,

• performance,

• object-orientation, and

• multithreading extension.

Table 3.1 Based on personal experience and tests on the target platform, table 3.1 shows potential

languages that are candidates for an implementation.

Name Portability Reusability Per-

formance

Object-

Orientation

Multi-

threading

Java very good Java only moderate yes proprietary

C good good good limited through

pthread

library

C++ very good very good good yes through

pthread

library

C# poor very good moderate yes proprietary

Assembler n/a same

platform

very good no no

Table 3.1: Comparison of common Programming Languages

Only the fully object-oriented Java, C++ and C# were serious candidates. Since the pro-

gramming languages C# and Java only provide own proprietary multithreading frameworks and



3.3 Specification 33

C# is not yet directly supported by the SolarisTMoperating system, these two languages were also

excluded. Therefore, we choose C++ as the programming language for the final implementation.

3.3.1.2 GUI Framework

In contrast to the developer driven choice of the programming language, the choice of the

graphical user interface framework depends on the requirements of the particular users but also

on the available operating systems. Therefore, the criteria for a suitable GUI framework are:

• portability,

• graphical component variety,

• multithreading capabilities,

• performance,

• object-oriented integration.

Table 3.2 lists GUI frameworks that can be used with the C++ programming language. It is

based on performed tests and personal experiences.

Name Portability Component

Variety

Multi-

threading

Per-

formance

Object-

Oriented

integration

GTK+ good good good very good limited

Qt very good very good very good good very good

KDE good very good very good good very good

Motif++ poor poor poor good poor

Table 3.2: Comparison of GUI frameworks

Another relevant aspect for the choice of the GUI framework is the existence of other software

development projects at the PET center. Beside the fact that Qt fulfills most of the required

criteria, it is also the preferred GUI framework for other software projects carried out at the

PET center in Rossendorf. We therefore chose Qt as the graphical user interface framework for

an optimized implementation of the movement correction.

3.3.1.3 Multithreading Framework

An important part of of this thesis is the application of parallel computing techniques in the

development process. This requires to analyze the multithreading capabilities of the involved

operating systems as well as to search for an appropriate multithreading framework.



34 Chapter 3. Implementation Aspects

Since most computer systems at the PET center Rossendorf are running the Solaris operating

system, we choose this platform as the primary platform for the implementation. As this oper-

ating system natively supports multithreading through the Symmetric Multiprocessing (SMP)

architecture, a multithreading framework was used to separate computational independent parts

and distribute them on different processors. Available multithreading frameworks that can be

used with SolarisTMare either the operating system’s own framework (SolarisTMThreads) or the

available POSIX Threads (pthread) library.

Solaris threads and pthreads are very similar in both API action and syntax. In contrast to

Solaris threads, the pthread framework is based on the POSIX standard and therefore allows to

port an application to another platform where an implementation of pthreads exists. Addition-

ally, the Qt framework provides low-level classes such as multithreading classes that are directly

based upon the POSIX thread framework, acting as a wrapper and providing the same pthreads

functionality, but within an object-oriented environment.

The features of the pthreads framework and the cooperation between pthreads and Qt there-

fore supports the choice of Qt framework. Moreover, it allows to develop multithreading enabled

graphical applications which are then also portable to other operating systems. In addition, there

exist Qt implementations for all major Unix systems such as for SolarisTMand Linux etc., as

well as for MacOSXTMand Microsoft WindowsTM.

3.3.2 External Interfaces

As the application will be used to preprocess the acquisition data of a PET tomograph prior

to image reconstruction, several interfaces have to be defined. The application has to support

the native file formats like the listmode and the sinogram file format of the PET scanner, and

must be able to read the movement information from the motion tracking system. Therefore,

the main external interfaces are discussed in the following subsections, which concentrate on the

raw formats and features that have to be supported.

3.3.2.1 PET Listmode Format

A listmode file consist of 32bit big-endian words. No header exists, and the maximum file size is

only limited by the file system’s capabilities4. Two different types of listmode words exist, time

words and event words. They are distinguished by a tag, the most significant bit 31.

Time words are inserted into the listmode stream every millisecond. A time word contains

the time in milliseconds since the start of the listmode acquisition within its first 27 bits5. In

addition, bits 27-30 are reserved for gating to signal a special event6. The time at which a

4the system controlling a EXACT HR+ scanner limits the file size to a maximum of 2GB and creates successive

files to cover the whole data set.
5which limits a listmode acquisition duration to ≈ 37 hours.
6e.g. during a heart examination with a connected ECG the start of a new heart beat cycle.



3.3 Specification 35

32bit wide

...

...

Event word11010101010101010101010101010101
031

Time word01010101010101010101010101010101
031

abcd

efg

Bits
0-8

9-17
18-30

31

Len
9
9

13
1

Description
Angle
Element ID
"Event Type" (encoded)
Tag, 0=Event  word

#
a
b
c
d

Event word:

Bits
0-26

27-30
31

Len
27
4
1

Description
Time (milliseconds)
Gating
Tag, 1=Time word

#
e
f   
g

Time word:

m
ax

. 
2G

B

...
...

... ...
...
...
... ...

...
...

...

Big Endian words

Figure 3.3: A PET scanner can be configured to save the acquisition data in listmode

format. This format consists of 32bit long big endian words where two different

types of words (time word and event word) exist. This figure shows the bit

definitions for each word type [Nic98].

specific coincidence is registered is determined by the most recent time word in the file. Event

words at the beginning of the file have time zero until occurrence of the first time word.

As shown in figure 3.3, event words describe the LOR of a single coincidence - the discrete

values of the angle (AN) and radial element (RE) of the LOR and the numbers of the involved

detector rings (RIA,B). Please note that the information of the ring numbers are encoded

separatly in a EventType bit field, which will not further be discussed here [Nic98].

3.3.2.2 ECAT File Format

By default, the EXACT HR+ sorts the data of an acquisition directly into a sinogram and

represents the input for image reconstruction process. As the movement correction is based

on listmode acquisition, support for the native sinogram file format is necessary. The EXACT

HR+ outputs the sinogram data in the proprietary ECAT file format that is based on a general

matrix file format specification for image processing [Col85].

ECAT files are logically divided into 512 byte long blocks. The first block is always the main-

header that contains general information like patient data, used isotope and other acquisition

relevant meta data. In addition, it contains a type identifier such that an ECAT file is able to

contain different types of matrix data. The second block is a directory list that contains start

and end position of a maximum of 31 data blocks that contain the matrix data of the sinogram,

along with an additional flag to signal if a particular data block is valid or is still pending to

be written. The directory list allows the distinction of each of these blocks by a unique 32bit



36 Chapter 3. Implementation Aspects

...

...
...

ECAT Format
(Viewmode)

Frame 1
Plane 1
Gate 1
Data 0
Bed 0

Frame 2
Plane 1
Gate 1
Data 0
Bed 0

Segment 0

Segment +1

Segment -1

Segment +2

Segment -2

512
1024

2048

...
...

...
...

...
...0

Subheader

DirectoryList
Mainheader

0000 0004 0000 0002 0000 0000 0000 001B
Matrix ID

Subheader
Record
number

Last 
record of 
matrix

Matrix 
status

0101 0001 0000 0003 0000 0FC3 0000 0001
0

1

0101 0002 0000 0FC4 0000 1F84 0000 00012

0101 0003 0000 1F85 0000 2F45 0000 000131

...
...

...
...

...

Entry 0 is used to manage and link different 
directory lists if more than 31 entries have to be 
stored in a single file.

The matrix status can either be 1 to signal that 
the matrix allows read/write access, 0 to signal 
data is currently written, or -1 to indicate the 
deletion of a matrix.

The MatrixID is an encoded 32bit value that 
specifies the frame/plane/gate/data and bed 
number that the matrix belongs to.

...

Figure 3.4: Illustration of the ECAT file format with a brief description of the binary

format of a single directory list [ECA99].

identifier which consists of the frame, gate, bed, and plane the data block belongs to. In addition,

it contains another identifier that allows the reference of succeeding and preceding directory lists,

and thus provides an endless linked-list functionality.

As shown in figure 3.4, each referred data block in the directory list starts with a sub-header

that contains type-specific meta information about the succeeding matrix data. More informa-

tion on the definition of the ECAT file format can be found in [ECA99].

To implement the ECAT sinogram file format output routines, the following possibilities

have been evaluated:

• Usage of the ECAT file I/O libraries of Uwe Just [Jus00],

• usage of the ECAT file I/O libraries of Merence Sibomana, or

• development and use of a custom multithreading enabled ECAT file I/O library imple-

mentation.

Even if the usage of an existing library should be preferred in most cases, the evaluation of the

available ECAT file format implementations showed that they are all written in a non object-

oriented programming language, and do not support the integration within a multithreading

environment. As this thesis discusses the parallel computing optimization of the movement

correction, it was necessary to implement multithreading capable file I/O routines for writing

ECAT sinogram files. These routines were integrated in an own ECAT library implementation

and are available for use in other ECAT supporting applications at the PET center.



3.3 Specification 37

3.3.2.3 Motion Tracking System

The patient movement information is directly provided by the computer system that controls the

motion tracking system. It sends out UDP datagrams through a network interface periodically

which are either binary or ASCII encoded. These datagrams carry the movement relevant

position information of a tracked body relative to a reference position and can be send out to a

maximum number of 4 different computer systems simultaneously, cf. [ART02]. As the binary

encoded format has become obsolete with the latest version of the motion tracking software,

this section concentrates on discussing the ASCII based format specification only.

Identifier Description Example

fr <int> continuous frame number fr 47

ts <float> optional continuous time stamp

since 0:00am with an accuracy

4terr ≈ ±10ms

ts 39596.024

3d <int> ... all 3D-marker position information 3d 1 [0 1.000][210.730 -90.669 -108.554]

6d <int> ... all 6D-body position/rotation

information

6d 1 [0 1.000][326.848 -187.216 109.503

-160.4704 -3.6963 -7.0913][-0.9452

-0.3392 -0.0190 0.3335 -0.9325 0.1377

-0.0644 0.1231 0.990286]

Table 3.3: Prior to the movement correction computation, the motion tracking inform-

ation is provided by ASCII encoded string in send out UDP datagrams. Al-

though the motion tracking system supports more data strings, the table lists

only those strings that are required for the movement correction processing.

A single ASCII datagram consists of multiple lines which are separated through a CRLF

(hex: 0D 0A) line break. Depending on the sampling rate and a data divisor the tracking

system sends a datagram for each measurement (i.e. frame). Each line starts with an identifier

that specifies the type of the remaining data in this line. Although the motion tracking system

can provide more data and identifiers, we only concentrate on the ones listed in table 3.3.

Each datagram starts with a "fr <int>" line where <int> refers to a continuous identi-

fication number of the measured frame. An optional "ts <float>" line provides the timing

information, when the motion information has been tracked by the system. The rest of the da-

tagram contains any number of lines with tracking information of markers or bodies (cf. section

2.4) which have the following format:

• 3D-Markers: "3d n [1 q1][P1x P1y P1z]...[n qn][Pnx Pny Pnz]"

A line starting with "3d" contains n marker locations (counting from one), where each

marker is identified by a "[n qn][Pnx Pny Pnz]" section. A provided floating point

quality factor qn ranges from zero to one and describes the tracking stability at the time



38 Chapter 3. Implementation Aspects

the position of ~Pn has been tracked 7.

• 6D-Bodies: "6d n [0 q0][P0x P0y P0z η0 θ0 φ0][T01,1 T02,1 T03,1 T01,2 T02,2 T03,2 T01,3 T02,3 T03,3].."

A line starting with "6d" contains positions (~Pn) and orientation (ηn, θn, φn) of n different

bodies (counting from zero) within the FOV of the tracking system. The center of gravity

of each body is specified by a vector ~Pn. The orientation is specified by three angles η, θ

and φ (in degrees) that can be used to calculate the rotation matrix R̂ with three successive

rotations Ri(α) (x → y → z) around an axis i with angle α:

R̂ = Rx(η) ·Ry(θ) ·Rz(φ) (3.1)

The final rotation matrix R̂ can be expressed as:

R̂ =


cos φ cos θ − sinφ cos θ sin θ

sin φ cos η + cos φ sin θ sin η cos φ cos η − sinφ sin θ sinφ − cos θ sin η

sin φ sin η − cos φ sin θ cos η cos φ sin η + sinφ sin θ cos φ cos θ cos φ

 (3.2)

For convenience the rotation matrix (3.2) is directly provided in the separate "[T01,1...T03,3]"

section of the ASCII line, and the indexes follow the same layout as shown in equation

(2.3).

Obviously, the routines that receive the UDP datagrams from the motion tracking system have

to provide string parsing routines to extract the required information.

Command string Action

dtrack 10 0 Stop a currently running measurement.

dtrack 10 1 Start the ARTtrack cameras (no marker/body measurement).

dtrack 10 3 Start the ARTtrack cameras and marker/body measurement.

dtrack 31 Start of an continuous performance data transfer.

dtrack 32 Pause a performance data transfer.

dtrack 33 n Request n performance datagrams.

Table 3.4: DTrack remote-control command strings

In addition to the UDP data transmission, the motion tracking system provides a remote

control facility, where an UDP based listener at the tracking system waits for NUL-terminated

ASCII command strings. Table 3.4 lists the possible commands which have also to be supported

by the movement correction application.

In summary, the implementation has to provide methods to receive and send UDP datagrams

from and to a specific IP address and port. As the Qt framework (cf. section 3.3.1.2) provides

a way to keep the source code fully portable over multiple platforms, it also ships with several

socket classes which have been chosen for the purpose of communication with the motion tracking

system.
7 ~Pn is also the center of gravity (CG) of each marker and body.



3.4 Implementation Prospect 39

3.4 Implementation Prospect

After having discussed the requirements and the internal and external interfaces, that are going

to be supported by the introduced application, the following summarized prospects can be listed:

• Due to computational optimizations, such as parallel computing optimizations through a

multithreaded implementation, the movement correction performance is expected to be

significantly improved such that a routinely usage will be possible.

• An intuitive graphical user interface (GUI) will allow the use of the movement correction

by the technicians using the tomograph for routine examinations.

• The implementation of network I/O functionality will allow the direct communication and

control of the tracking system through the application.

• An expert mode within the GUI and the additional command-line interface will allow

scientists to use the application as an administration and scientific analysis tool.

• An object-oriented design and implementation as well as the portable development using

Qt/C++ will assure the future use and compatibility to other operating systems.

• The development of custom multithreading optimized file I/O routines of ECAT compat-

ible files will allow the use of standard image reconstruction software.





Chapter 4

Parallel Computing Analysis

Parallelization is a common optimization technique in computer science. However, in order to

benefit from this optimization, analysis on the involved algorithms have to be performed to

uncover independent areas that can be computed in parallel.

4.1 Fundamentals

The goal of parallel computing is to speed up execution of a program by dividing computations

into independent fractions (which are implemented by a thread1) and to distribute them on

multiple processor units. The ideal assumption, that a multiple processor machine with N

processors speeds up a parallelized program N times, does hold in practice, since the overhead

of the underlying operating system limits this factor. In addition, the maximum achievable

speedup depends on the size of the remaining fraction that, due to data dependencies, can only

be executed on one processor.

Assuming that the size of a sequential fraction f is known, the expectable speedup S(N) is

defined by Amdahl’s Law [Amd67],

S(N) =
1

f + 1−f
N

with f > 0 (4.1)

which has a limiting value of 1/f for an infinite number of processors. This law illustrates that

the amount of expectable speedup depends on the sequential fraction f , where in practice a value

of f = 0 is unachievable. This leads to the conclusion, that even on a multiprocessor machine

with unlimited number of processors, a sequential fraction of 10% limits the total achievable

speedup to S(∞) ≈ 10.

Another more general estimation for the expectable speedup is, that the speedup does not

scale with the number of processors, but with N/ log2 N . However, analysis and tests have

shown that an application can be practically speed up to a maximum of S(4) ≈ 1.9 on a four

processor system [Lan02].

1A thread is defined as an independent fraction of code that runs and shares memory with others in parallel.

41



42 Chapter 4. Parallel Computing Analysis

Therefore, it is important to reduce the amount of sequential computations. In addition, if

some threads have to share the same data, special techniques have to be used to synchronize

the access to this data. The used Qt/POSIX multithreading functionality generally provides

the following different methods to synchronize such an access:

A. Mutual-Exclusives (Mutex)

A mutex is generally used to protect an object, data structure or section of code so that only

one thread can access it at a time2. For example, say there are two methods which modify

the value of the same int variable number. If these two methods are called simultaneously

from two threads then the result of this variable is undefined, because both threads could

have changed the contents of the variable at the same time. Listing 4.1 illustrates the use

of a mutual-exlusive mechanism, with the provided QMutex class in Qt to synchronize

the access.

Listing 4.1: Use a QMutex to protect shared data

QMutex mutex ;

int number = 6 ;

void Thread1 : : calc method ( )

{
mutex . l o ck ( ) ; // l o c k access to ”number”

number ∗= 5;

number /= 4;

mutex . unlock ( ) ; // unlock access to ”number”

}

void Thread2 : : calc method ( )

{
mutex . l o ck ( ) ; // l o c k access to ”number”

number ∗= 3;

number /= 2;

mutex . unlock ( ) ; // unlock access to ”number”

}

Here the calls to methods mutex.lock() and mutex.unlock() are atomic, i.e. are indi-

visible operations, that try to lock and unlock the access to the mutex. If a mutex could

successfully be locked, the thread which called the mutex.lock() method continues with

its execution, or otherwise halts until another thread is unlocking it with mutex.unlock().

Listing 4.1 illustrates that without the use of such mutex mechanisms, both threads are

able to change the value of the shared variable while another thread is currently also

altering the value in parallel, thus resulting in an undefined state of number.

In addition to protect a shared data area, mutexes are also often used to prevent so

called race conditions. These are situations where the result of multiple events depends

on the execution order and this order cannot be guaranteed. For example, if one thread is
2which is also similar to the synchronized keyword in Java.



4.1 Fundamentals 43

currently in the process of checking if a particular file exists and tries to open it afterwards,

another thread could possibly remove that file before it could be opened by the initial

thread.

B. Semaphores

A semaphore can be used to serialize thread executions, similar to a mutex. However, it

differs from a mutex in that a semaphore can be accessed by more than one thread at a

time. Although a semaphore can be used instead of a mutex, it is often used as a resource

control facility.

For example, suppose we have an application that generates a large number of threads

operating on some data (a thread pool), but wants to limit the amount of currently running

threads to the available number of processors. As shown in Listing 4.2 the QSemaphore

class of the Qt framework is used to instantiate a semaphore object for that purpose.

Listing 4.2: Use a QSemaphore to manage thread resources

int num processors = 4 ;

QSemaphore sempahore ( num processors ) ;

void MyThread : : s t a r t ed ( )

{
++semaphore ; // ge t access i f semaphore . a v a i l a b l e () > 0 or wait .

}

void MyThread : : f i n i s h e d ( )

{
−−semaphore ; // r e l e a s e access to the semaphore and

// increase semaphore . a v a i l a b l e ( ) by one .

}

This object is used in a separate started() and finished() method within each thread

class, such that a maximum of num processors threads is guaranteed to run at the same

time.

During the execution of these methods the access is synchronized by operator-overloaded

calls to the semaphore. Each call to the ++semaphore method tries to obtain access to

the semaphore, and thus tries to decrease the number of available slots for a simultan-

eous execution. When the access slots are exhausted (semaphore.available() == 0),

another call to the ++semaphore method suspends the requesting thread until another one

is signaling with a call of the --semaphore method, that it has finished its processing.

In the present context, several semaphores are used to synchronize the execution of threads

as shown in listing 4.2. In section 4.3 we discuss use of these semaphores within thread

pools.



44 Chapter 4. Parallel Computing Analysis

C. Wait Conditions

As an inter-thread communication method, wait conditions allow a thread to notify other

threads that some condition is met and that those waiting for this condition should ”wake

up”.

For example, if we have two tasks that run every time the user presses a key, each of

these tasks is assigned to a thread that waits until a third thread signals it to start its

computation. With using the Qt framework, such a wait condition is implemented by

using a global object of the QWaitCondition class, as illustrated in Listing 4.3.

Listing 4.3: Use a QWaitCondition to let threads communicate

QWaitCondition key pre s s ed ;

void ComputeThread : : run ( )

{
while ( true )

{
key pre s s ed . wait ( ) ; // wait u n t i l another thread s i g n a l s to wake up .

// Key was pressed , s t a r t computations

. . .

}
}

void KeyboardThread : : readKeyboard ( )

{
while ( true )

{
getchar ( ) ; // wait u n t i l a key on the keyboard has been pressed

key pre s s ed . wakeAll ( ) ; // Causes any thread in key pre s s ed . wai t ( ) to re turn

// from tha t method and cont inue proces s ing

}
}

The listing shows that as soon as the keyboard thread calls the key pressed.wakeAll()

method, all threads waiting for this condition wake up immediately and resume their

execution.

In addition, a thread signaling other threads to wake up can issue a method that only

wakes up a single thread out of the waiting queue. In Qt this is implemented within the

wakeOne() method of the wait condition class. However, due to the implementation of

this wait condition methods, it is nondeterministic which thread will wake up first.

Of course, the use of synchronization methods also has an impact on the overall possible

increase in speed, due to the use of multithreading capabilities. This is the reason why a

separate dependency analysis of the different involved computations has to be performed, such

that the shared data areas are identified and encapsulated properly.



4.2 Dependency Analysis 45

4.2 Dependency Analysis

In terms of the optimization of the movement correction process the performed analysis concen-

trated on trying to separate the partial position correction steps (cf. section 2.2), such that a

large number of steps can be performed in parallel.

Frame 3

Coincidence
Position

Correction

Sinogram
sorting

uses

1 1

uses

*

1

Out-of-FOV
Correction

1

*

Frame 2

Coincidence
Position

Correction

Sinogram
sorting

uses

1 1

uses

*

1

Out-of-FOV
Correction

1

*

Frame 1

Coincidence
Position

Correction

Sinogram
sorting

uses

1 1

uses

*

1

Out-of-FOV
Correction

1

*

Figure 4.1: Dependency graph of Movement Correction entities

It turned out that only the three frame-based steps, shown in figure 4.1, have a significant

potential for a parallel computing optimization. The independence of the intrinsic coincidence

position correction algorithms and the Out-of-FOV computations, as well as the fact that each

frame can be handled independently, are reasons why the further analysis was split into three

different optimizing stages.

4.2.1 Stage 1 - Frame optimized parallelism

In a PET examination, the acquisition data is sorted into different sinograms, depending on

either time based (frame), position based (bed) or trigger based (gate) criteria. However, for

brain examinations only the frame based separation has been reviewed. The acquisition data of

each of the frames are independent from other frames. Therefore, this natural separation was

adopted and each frame has been encapsulated within a separate thread.

Frame 1

Frame 1 Frame 2

Frame 2
Parallel

Sequential

(2xCPU)

(1xCPU)

t
t0t10

sta
ge 

1

Figure 4.2: Stage 1 - Frame based dependency splitting



46 Chapter 4. Parallel Computing Analysis

Figure 4.2 illustrates that in contrast to sequential execution, the synchronous computation

of the frames decreases the maximum required execution time (t0 > t1). However, the minimum

possible execution such a frame-based parallelism can provide, is limited by the number of

processors available and the duration of the longest frame computation.

4.2.2 Stage 2 - Out-of-FOV optimized parallelism

The movement correction computations that are performed for a single frame imply computa-

tions of several Out-of-FOV corrections (OFC). While the number of required OFC corrections

within a frame is proportional to the number of available movement informations (transform-

ations) for this frame, the complexity and therefore the theoretical execution duration of each

OFC is equal (c.f. section 2.2.1.3). However, an OFC is independent of the intrinsic coincidence

position correction, because of the data independence of both types of correction.

C

O

Parallel
(2xCPU)

O

O O

C OO

Parallel
(4xCPU)

C OOO

t
t0t10 t2

waitC

O

O Out-of-FOV
Correction

C Movement
Correction

Frame 2

Frame 1

sta
ge

 2

Figure 4.3: Stage 2 - Out-of-FOV based dependency splitting

Therefore each OFC was encapsulated within a thread, sharing and synchronizing data

only between other OFCs operating on the same frame. Figure 4.3 illustrates how the overall

execution time is decreased by executing each OFC in parallel. The example shows that due

to the additional splitting of the movement correction process into several independent OFC

corrections the total execution time has been further reduced to t2 (t0 > t1 > t2).

However, due to the processing dependencies (cf. figure 4.1) of the movement correction

process, this figure illustrates also that for a frame in which more OFC computations than

movement correction computations have to be performed, a waiting phase is included during

which the end of the OFC computations has to be waited for. This ”waiting phase” limits

the maximum possible reduction of the execution time, because no other computations can be

performed during that time until the corrected data is finalized and sorted into the sinogram.

4.2.3 Stage 3 - Sinogram sorting optimized parallelism

The movement correction process of a frame is finalized by sorting the corrected coincidence

data into a sinogram file. Due to the data dependency between the OFC correction and the

sinogram sorting, the stage 2 optimization (cf. section 4.2.2) showed that if this sorting is done



4.3 Hierarchical Thread Modeling 47

within the same computation thread as the coincidence correction, it happens that this thread

has to wait until all OFC are finished and therefore puts one processor unit to sleep.

C

OO

O OParallel
(4xCPU)

t
t0t10 t2

S

SwaitC

O

C

OO

O O

S

SC O

t3

Parallel
(4xCPU)

S Sinogram
Builder

O Out-of-FOV
Correction

C Movement
Correction

Frame 2

Frame 1

sta
ge

 3

Figure 4.4: Stage 3 - Sinogram sorting based dependency splitting

This situation is avoided by running the final sinogram sorting in a separate thread, thus

allowing the processor to be used by other threads during the waiting phase. The example

shown in figure 4.4 illustrates that this technique can lead to a further reduction of the overall

execution time (t0 > t1 > t2 > t3).

In addition, if more frames have to be corrected, this technique allows to start the computa-

tions of the successive frame earlier, thus having the results of each frame computation available

earlier.

4.3 Hierarchical Thread Modeling

When a process is split into several threads, the proper processing and relational computation

of these fractions have to be assured. This requires to have a central management unit, a thread

dispatcher, that ”knows” all threads within the running application. In addition, the modeling

of the threads within a hierarchical system is often preferred, such that a thread manages the

execution of potential sub-threads on its own. This assures an additional security and data

encapsulation within the object-oriented context.

Figure 4.5 illustrates how the different threads discussed in section 4.2 are managed within

a hierarchical system. It includes a thread dispatcher which acts as the central communication

unit between the sub-threads of each frame and the user interface.

As the number of required threads is generally greater than the number of available pro-

cessors, the thread model has to provide a processing queue. This avoids putting too much

load on the operating system by processing more simultaneously running threads than there are

available processor units. Therefore, each thread containing sub-threads within the hierarchical

thread model provides a thread pool that manages the execution and distribution of its sub-

threads. The number of simultaneous processing movement corrections is managed by a main



48 Chapter 4. Parallel Computing Analysis

more frames

Out-of-FOV
Correction

Thread 
Dispatcher

Movement 
Correction

Out-of-FOV
Correction

Sinogram 
Sorting

User
Interface

Frame 1

Out-of-FOV
Correction

Movement 
Correction

Out-of-FOV
Correction

Sinogram 
Sorting

Frame 2

Figure 4.5: Hierarchical thread modeling including a Thread Dispatcher

thread pool within the thread dispatcher, while the number of parallel running OFC corrections

is handled by a second thread pool within each movement correction thread.

This hierarchical management, in which only the parent entity ”knows” about its sub-

threads, allows not only to manage these entities within separate pools, it also assures that

due to the invisibility of a sub-thread to another one, the security of the execution of such a

thread is increased.

4.4 User Interface Communication

Having multiple threads within an application requires a proper communication between the

threads and the provided user interface. In case of a simple command-line application, the

communication is generally limited to signaling progress or error events to the terminal which

is perfectly possible from each thread via standard I/O methods like cout or cin in C++

In contrast, in an application with a graphical user interface or advanced event handling,

the communication between threads and the user interface dependents on the implementation

of the underlying event handling system of the employed GUI framework.

In the Qt framework, graphical objects are generally communicating with a signal-slot mech-

anism, where an object can connect a predefined signal to a slot of another object such that as

soon as the signal is emitted, the corresponding slot method is called.

Listing 4.4: Use the connect() method to use the signal-slot mechanism of Qt

QPushButton startButton ;

void MyApplication : : i n i t ( )

{
connect(&startButton , SIGNAL( c l i c k e d ( ) ) , // connect s i g n a l c l i c k e d ( ) o f s tar tBut ton



4.4 User Interface Communication 49

this , SLOT( proce s sC l i cked ( ) ) ; // to the proce s sC l i cked ( ) method o f

// our app l i c a t i on

}

void MyApplication : : p ro c e s sC l i cked ( )

{
// w i l l be c a l l e d as soon as s tar tBut ton i s pressed

. . .

}

For example, Qt allows to connect a clicked() signal of a QPushButton object to an own

method via a special connect() method, as shown in listing 4.4. This method is then called as

soon as the connected button is pressed.

As the entire GUI communication in Qt is running in the same thread as the application, and

the signal-slot mechanism requires the connected objects to run within the same thread, a direct

interaction between a sub-thread and the GUI is not possible through the signal-slot connection.

However, like other modern GUI frameworks, Qt provides an advanced event handler that allows

to send custom event objects via an application wide method postEvent() to a custom event

method customEvent() of any object inherited from the base class QObject .

Listing 4.5: Use the Qt event system via an own customEvent() method

void MyThread : : s ignalProgressToGUI ( )

{
// To send a progres s in format ion to the GUI , we forward

// the event to the thread d i spa tcher , which can then use the s i gna l−s l o t mechanism

QApplication : : postEvent ( d i spatcher , new QCustomEvent ( 6 5432 ) ) ;

}

// To re c e i v e an event o f t h i s custom event type :

void ThreadDispatcher : : customEvent (QCustomEvent ∗ e )

{
i f ( e−>type () == 65432)

{
// i t must be the progres s event from MyThread

// so emit the s i g n a l ” progres s ” to the GUI elements

// connected to t h i s s i g n a l

emit p rog r e s s ( 65432 ) ;

}
}

In our application, this event system is used to implement the communication between the com-

putation threads and the GUI. The thread dispatcher of section 4.3 acts as the communication

unit between the GUI and the threads, forwarding each information coming from the threads

via signals to each GUI elements. Listing 4.5 illustrates this, by showing an example of how

a thread MyThread posts an event that will be received by the customEvent() method of the

thread dispatcher, that will then emit a specific signal that another GUI element can receive.

This mechanism is used to signal special events like progress, warning, and error events and

allows the GUI elements to react upon the reception of these events, e.g. forwarding the error

messages to GUI requesters that allow to abort a movement correction execution.





Chapter 5

Implementation

This chapter discusses the object-oriented implementation of the head movement correction

application. Where applicable, UML diagrams illustrate the implemented functionality and the

hierarchies between the different classes [Gro03, Oes98].

5.1 Mathematical Interfaces

During the movement correction process, methods perform basic mathematical tasks such as

spatial transformations or other computations on huge data arrays. For example, each Out-

of-FOV correction has to iterate and perform spatial transformations over a multi-dimensional

matrix that contains ≈ 8.49 · 107 floating point values, which results in ≈300MB1 of data. In

addition, the intrinsic coincidence correction uses a temporary matrix with the same amount of

data to store each corrected LOR within this matrix, and thus results in ≈600MB of minimum

data required per frame.

In contrast to the management of matrices with the C programming language, in C++ such

multi-dimensional data is generally handled within storage classes that provide different accessor

methods for transparent access to data elements by their dimensional position. Unfortunately,

the flexibility provided by such full object-oriented storage class implementations puts additional

load on the performance of the algorithms that use these methods to access the data objects.

We therefore implemented two different approaches to the data management of our movement

correction, and discuss them in the following subsections.

5.1.1 Direct-Access Matrix Management

The high frequency of data access within time critical computations requires the ability to access

each data element quickly. Within movement correction, computational data is managed in huge

three or four dimensional matrices, and the intrinsic coincidence correction algorithms access

different elements of such a matrix at a time.
1assuming a floating point value to have 32bit.

51



52 Chapter 5. Implementation

Therefore, in contrast to a full object-oriented implementation of multidimensional mat-

rix classes, a simple and quick-access implementation of a matrix storage class hierarchy was

implemented.

CMatrix
{abstract}

# m_pMatrix: T*
+ clear(): void
+ size(): long
+ getRawData(): T*
...

T

C2DMatrix
- m_iXDim: int
- m_iYDim: int
+ clear(): void
+ size(): long
+ getRawData(): T*
...

T
C3DMatrix

- m_iXDim: int
- m_iYDim: int
- m_iZDim: int
+ clear(): void
+ size(): long
+ getRawData(): T*
...

T
C4DMatrix

- m_iXDim: int
- m_iYDim: int
- m_iZDim: int
- m_iTDim: int
+ clear(): void
+ size(): long
+ getRawData(): T*
...

T

Figure 5.1: Class hierarchy of Direct-Access matrix classes

As the type of data stored within these classes varies on the different types of computations,

the storage classes were implemented by template classes, that are instantiated with an appro-

priate data type at declaration time, thus providing data type independence. Figure 5.1 shows

the different implemented classes which provide direct access via a getRawData() method to the

matrix data stored within each instance. The increase of performance to access each element

of the matrix data results from the fact that the data for these matrices is allocated and freed

with standardized ANSI-C functions like malloc(), free() and not with their more complex

C++ counterparts new and delete. In addition, the access to each matrix element is implemen-

ted with standard C++ multi-dimensional array access operators, e.g. matrix[x][y][z] = 3,

rather than by calls to custom accessor methods within each matrix object, e.g. setElement(x,

y, z, 3).

This type of matrix storage class implementation allows to profit from the object-oriented

way to manage hierarchical types, but also provides a method to have direct and efficient access

to each matrix data, thus allows to quickly iterate through the data.

5.1.2 Indirect-Access Matrix Management

The implementation of indirect-access storage classes refers to the technique to access a specific

data element with centralized accessor methods. In contrast to the quick-access matrix classes

of the above section, these classes provide the possibility to dynamically change the size and



5.1 Mathematical Interfaces 53

dimensions of the stored data, and thus provides more flexibility in their application.

CVector
...
+ get(x: int): T
+ set(x: int, value: T): void
...

T CVectorArray
...
+ get(x: int, i: int): T
+ set(x: int, i: int, value: T): void
...

T

CVectorMatrix
...
+ get(x: int, y: int): T
+ set(x: int, y: int, value: T): void
...

T

* 1

QPtrVector
T

QMemArray
T

Figure 5.2: Class hierarchy of Indirect-Access matrix classes

In the movement correction application the classes shown in figure 5.2 were implemented and

are mainly used for the spatial calibration procedures of the motion tracking system support,

where no time critical computations are performed. As indicated in figure 5.2, these classes

provide get() and set() accessor methods to access each data element separately. In addition,

the classes provide basic vector/matrix computation methods to e.g. perform a vector-matrix

multiplication, or to compute the inverse of a matrix.

5.1.3 GNU Scientific Library (GSL)

In addition to the provided matrix data storage functionality, the use of available third-party

numerical C/C++ libraries has been evaluated during the implementation phase. In fact, the

freely available GNU Scientific Library (GSL) is used within the application. In contrast to

other available libraries, this library provides a wide range of advanced, well-proofed and up

to date numerical algorithm implementations, such as algorithms for linear algebra or solving

multidimensional minimization [GDT03].

For example, as discussed in section 2.3, the selection criteria for the transformations ob-

tained from the motion tracking system will be calculated with help of such iterative mul-

tidimensional minimization. Within the indirect-access storage class CVectorMatrix these

computations are implemented by a separate analyzeMovement() method that uses the GSL

library to filter out transformations representing movements which can be neglected.

Furthermore, the CVectorArray class provides a calcTransMatrix() method that uses

linear algebra functions of the GSL library to compute the homogeneous transformation matrix



54 Chapter 5. Implementation

required for a proper cross-calibration, as discussed in section 2.1.1.

Due to the use of the GSL library, many numerical computations within the movement

correction application are simplified by implementing the functionality within a flexible class-

based hierarchy. Especially in fields of vector/matrix computations, the wide range of available

numerical functions in the GSL library allowed to simplify the implementation wherever no time

critical computations were necessary.

5.2 External Interfaces

During the development of the movement correction application, several required external inter-

faces, such as file formats, were implemented. After having specified the required data formats in

section 3.3.2, the following paragraph concentrates on discussing the implementation to support

these formats in own I/O routines or libraries.

5.2.1 Listmode File Management

Running in listmode, a PET scanner generally outputs the acquisition data stream to several

sequential files. The sequential layout and the several gigabyte large set of data required the

implementation of optimized file I/O routines, instead of using the standarized sequiential access

methods provided by Qt.

CListModeFile
- filename: QString 
...
+ scanStartTime(): void
...

CListModeFilePool
...
+ addFile(name: QString&): bool
+ removeFile(lmfile: CListModeFile): void
+ seek(tval: long): bool
+ nextLMWord(): int32 
...

* 1

QFile QPtrList
T

Figure 5.3: Class diagram of Listmode File Management classes

As each frame-based coincidence correction in the application accesses different data areas

depending on the start and end time of a the frame, separate buffers were used to cache a preset

amount of data in advance. This prevents the routines requesting the data to have to read

directly from the raw files each time, thus increases the performance.

This mechanism, together with a quick-sort optimized file seeking algorithm are implemented

in a CListModeFilePool class. It allows to add an unlimited number of listmode files by

encapsulating each file in a CListModeFile object, and thus provides a listmode pool (cf. figure



5.2 External Interfaces 55

5.3). In addition, the movement correction application uses such a pool as a transparent interface

to obtain successive listmode words of a data acquisition. During the computations, each frame-

based correction thread calls the nextLMWord() method of its own listmode file pool to retrieve

the next listmode word without having to care about possibly existing file boundaries or position

seeking mechanisms. Also, each frame thread using the pool does not need to care in which

listmode file the first frame relevant data word starts and where exactly the last one is located.

5.2.2 ECAT Sinogram File I/O

Similar to the listmode input file format, output of the corrected coincidence data in a sinogram

file according to the ECAT standard is an elementary requirement for the discussed application.

CECATFile

CECATMainHeader
{abstract}

CECATSubHeader
{abstract}

CECATDirectory

CECATDirectoryItem

CECAT7MainHeader CECAT6MainHeader

1
*

1 1

1

1

1
1

CECAT7SubHeader
Scan,Scan3D,...

CECAT6SubHeader
Scan,Scan3D,...

QFile

Figure 5.4: Class diagram of ECAT C++ file I/O Library classes

As outlined in section 3.3.2.2, an own C++ library implementation of this standarized file

format has been considered and during the development a separate branch to implement the

whole functionality of this file format has been started. However, as only the 3D sinogram file

output routines are required, other ECAT supported data types were not implemented, but

scheduled for a future development.

The ECAT file format exists in two versions, the old ECAT6 and the current ECAT7 version.

The main differences are the main header and sub header meta formats, as illustrated in figure

5.4. As the ECAT EXACT HR+ PET scanner outputs the sinogram data in ECAT7 format, the



56 Chapter 5. Implementation

library implementation concentrates on supporting this version but owing to the object-oriented

design of the library an implementation of the ECAT6 functionality is easy to achieve.

In contrast to other rarely existing ECAT6/7 file format libraries, the developed solution

has been implemented with multithreading support. Besides the reentrant implementation, it

supports the modification of two different directory items (matrices) in parallel. This allows the

movement correction application to finalize a particular frame-based correction as soon as it is

finished, and thus allows the user to evaluate the results of that frame while the correction of

following frames is still running.

5.2.3 Motion Tracking Data

The movement information provided by the motion tracking system can either be obtained by

directly receiving datagram packets via a network interface, or by using a command-line tool to

pipe the received data into a predefined ASCII-based data file. Both ways are supported by the

movement correction application. And as discussed in section 3.3.2.3, the data received from

the motion tracking system generally contains information about each 3D-marker and 6D-body

tracked within the FOV of the tracking system.

C3DObject
- m_pLocation: CVector
+ x(): double 
+ y(): double 
+ z(): double 
...

C3DMarker

...

C6DBody

+ getRotationMatrix(): CVectorMatrix
+ getRotationAngles(): CVector
...

CTrackData
- m_FrameList: QPtrList 
- loadFromFile(): long
- receiveFromUDP(): void
...

1

*

CCameraFrame
- m_lFrameNumber: long
- m_dTimeStamp: double
+ getMarker(m: int): QIntDict
+ getBody(body: int): QIntDict
...

1

*

1

*

Figure 5.5: Class diagram of Tracking System Data classes

Figure 5.5 illustrates the class CTrackData which implements several methods to obtain

the data either directly from a network interface or via loading it from a file. As the tracking

system provides the data within frames2 ”time intervals” the CCameraFrame class acts as a

container for the different markers and bodies within a single frame. As shown, this container

class carries variables of the C3DMarker and C6DBody class which inherits the functionality

from a base class C3DObject .

This way of implementation allows the movement correction to use the same classes for

2not to be confused with the PET scanner specific time frames.



5.2 External Interfaces 57

both, loading motion tracking data from an ASCII file or by directly receiving data via network

routines that are implemented within the CTrackData class.

5.2.4 XML based Import/Export

The eXtensible Markup Language (XML) is a meta description language to layout and manage

data hierarchically [Con03]. In the movement correction application, XML is used in many

different places throughout the implementation, but especially to import and export user or

configuration dependent data. As discussed in the requirements, the applications have to provide

a possibility to save the entire relevant data to a listmode study file, thus the format in which

the data was designed is XML.

Listing 5.1: Using XML to map your data

<LMMClms version=” 1 .0 ”>

<c o r r e c t i o n>

<time s t a r t=”” />

< l o rD i s c r e t i z a t i o n mode=”” />

<scannerData>

<lmFi lePool>

<lmFi le f i l ename=” f i l e 1 . lm” />

<lmFi le f i l ename=” f i l e 2 . lm” />

. . .

</ lmFi lePool>

<framePool>

<frame s t a r t=”0” end=”60000” />

<frame s t a r t=”60000” s t a r t=”90000” />

. . .

</ framePool>

<s i n g l e sRa t e s f i l ename=”” />

<norma l i za t i on idnorm=”” f i l ename=”” />

</ scannerData>

<trackingData mode=”” >

<c r o s sCa l i b r a t i o n date=”” />

<tmatr ix f i l ename=”” />

<t rackdata refBody=”” f i l ename=”” />

</ trackingData>

<outFOVCorrection relemmash=”” ringmash=”” anglemash=”” enabled=”” />

<outputFormat normalizedOutput=”” f i l e t y p e=”” f i l ename=”” />

<headerData isotope name=”” . . . pat ient name=”” />

</ c o r r e c t i o n>

</LMMClms>

As the Qt framework provides several portable classes to manage data within large XML trees,

these classes were used to develop import and export methods to handle study relevant data.

Aside from the XML tree structure, listing 5.1 shows that together with the correction relevant

data like frame start and end time, the format contains an additional <headerData /> tag that

handles all patient and study relevant data which is also stored into the final sinogram main

header.



58 Chapter 5. Implementation

By using XML-based study files, which are identifiable by their .lms file extension, a user

can save all relevant data so that a recalculation of the movement correction is possible at later

time.

5.3 Application Use Cases

An application does generally address several different user groups, and therefore also needs to

support different use cases. In fact, the movement correction application has two main user

groups.

Movement Correction Application 

Movement 
Correction

CalibrationMedical 
Technician Scientist

Analysis

Figure 5.6: Use-Case diagram of Movement Correction Application

The use-case diagram in figure 5.6 summarizes these groups and shows the different use cases

of the movement correction application. It illustrates that while a medical technician is interested

in using the application for the intrinsic movement correction, the more experienced scientist

uses the application for different purposes. He is interested in administrating the calibration of

the tracking system or performing study based analysis. While the analysis use case is more

related to providing graphical elements to output statistics within the application, the following

subsections will discuss the two main use cases, calibration and movement correction.

5.3.1 Calibration Management

The tracking system includes a room and body based calibration (cf. section 2.4). As those

calibrations have to be repeated regularly and as performed movement corrections are always

based on a specific calibration, each performed calibration is permanently stored in a database

like tree in the application. This tree is then exported to an application wide configuration file

lmmcsys.cfg which uses XML as the data description language. This file includes, in addition

to other information all calibration data available to the application, and acts as a repository of

all performed calibrations since the first usage of the application.

When a new calibration of the tracking system is required, the application is used to either

directly communicate with the motion tracking system or load the calibration relevant tracking



5.3 Application Use Cases 59

CRoomCalibration
- identifier: int
- bodyCalib: QPtrList
...
+ getCoordTransMatrix():
...

CBodyCalibration
- identifier: int
...
...

CCoordTransMatrix

+ getFwdRotMatrix(): CVectorMatrix
+ getFwdTranslVector(): CVector
+ getBwdRotMatrix(): CVectorMatrix
+ getBwdTranslVector(): CVecor
...

1

*

1

1

CCalibrationConfig
- roomCalibrations: QPtrList 
...
+ addRoomCalibration():
+ removeRoomCalibration():
+ getRoomCalibration():
...

1

*

Figure 5.7: Class diagram of Calibration Management classes

data and calculate the cross-calibration (cf. section 2.1.1). Figure 5.7 shows, that with each

new calibration the application instantiates a new object of the CRoomCalibration class and

appends it to an object of the general configuration class CCalibrationConfig , which acts as

a pool for all calibration relevant data. When the calibration data is obtained from the motion

tracking system and a transmission scan of the PET scanner, the data is used to compute

the forward and backward transformation matrix through the calcTransMatrix() method of

the CVectorArray class. The results of this computation are then stored into an instance of

the CCoordTransMatrix class, as illustrated in figure 5.7, and are used by each movement

correction and Out-of-FOV thread.

As new room calibrations require the recalibration of all used 6D-bodies of the motion track-

ing system, a room calibration object stores a CBodyCalibration object for every existing

body in a linked list. Within these body calibration objects, the specific body calibration in-

formation is stored and due to the hierarchical relationship between the room calibration object

and its body calibration children, a logical dependency is always ensured. Thus, storing all room

calibrations from the first use of the application in the calibration config object is required, to

ensure that a user is able to recalculate a specific movement correction study at a later time.

5.3.2 Movement Correction

As discussed in chapter 4, the intrinsic movement correction happens within separate frame

thread. Each of these threads contains several Out-of-FOV threads in which the OFC cor-

rections are computed from the available motion tracking information. Finally, the results of

the computations of these threads, together with additional corrections, are processed by a

Sinogram-Builder thread and sorted into a sinogram.

Figure 5.8 shows the movement correction relevant classes that have been implemented.



60 Chapter 5. Implementation

COutFOVThread CTransFrameThread* 1

CLORProcessor

1
1

1
1

CSinoFrame

1
1

COutFOVMatrix CSinoMatrix

CSinoFramePool 1 *

1

1

1
1 CListModeFilePool

CTransMatrixPool

1
1

1
1

Figure 5.8: Collaboration diagram of Movement Correction classes

Because both, the intrinsic movement correction and the Out-of-FOV correction spatially trans-

form LORs from one position to another, the figure illustrates the two main thread classes

COutFOVThread and CTransFrameThread that use objects of the same CLORProcessor class.

Within this class the functionality of the coincidence correction, as discussed in section 2 is im-

plemented. In fact in a process() method the LOR processor distinguishes between a movement

correction or an OFC correction. This allows to maintain the affected algorithm implementations

more easily, thus having only a single point of failure.

Additionally, the central functioning of the CSinoFrame class is shown in the same figure.

Looking at the movement correction process, this class was designed to implement a single

sinogram frame. Through this class, both the frame and OFC correction thread access their

data storage objects of the COutFOVMatrix and CSinoMatrix classes. When both threads

have finished their computations, a third CSinoBuilderThread processes the data stored within

these classes and sorts the finally corrected coincidences into a separate frame.

Similar to that, both threads obtain their input data (listmode and transformation matrix

data) through the same sinogram frame object by using sub-instances3 of the CListModeFilePool

and CTransMatrixPool classes as discussed in section 5.2.1.

5.3.2.1 Thread Management

The usage of parallel computations in an application requires an additional management of

the execution of these threads. As discussed in chapter 4, aside from the data synchronization

3sub-instances are copies of an existing object whereas only partially data is inherited depending on a condition.



5.3 Application Use Cases 61

mechanisms an application preferably uses a thread dispatcher to manage and optimize the

execution of all threads involved.

CThread
- frame: CSinoFrame 
...
+ setProgress(perc: short): void
+ getProgress(): short
...

COutFOVThread CTransFrameThread
* 1

CPreProcessThread CSinoBuilderThread

QThread

CThreadDispatcher

*

1

*

1

1

1

Figure 5.9: Class diagram of Multithreading classes

Therefore, in case of the movement correction application, the thread-based computations

are managed by an object of the CThreadDispatcher class which interacts as the central

communication unit between the threads and the user interface. All correction relevant data

is passed to the dispatcher in advance so that as soon as the movement correction is started,

the dispatcher acts as an independent interface that administrates the execution of all different

threads until the computations are finished and the sinogram is saved.

Figure 5.9 illustrates the thread dispatcher together with the four implemented thread classes.

All of these classes are derived from a CThread base class which itself inherits the functionality

of the Qt multithreading class QThread . This way, the derived thread classes can access all

data and communicate directly with the thread dispatcher to signal progress and error events.

The figure also shows, in addition to the frame and Out-of-FOV thread classes, the pre and

post processing classes, CPreProcessThread and CSinoBuilderThread . As the name implies,

the CPreProcessThread is used to preprocess data before the intrinsic movement correction

takes place. It is used to calculate conversion tables and precalculates the correction matrices,

so that the movement correction can use the precalculated data instead of having to calculate

it on demand. On the other hand, the CSinoBuilderThread is used to sort and store the

final data in the sinogram file. As soon as the movement correction thread and all Out-of-FOV

threads of a frame are finished, this sinogram building thread will be started by the dispatcher,



62 Chapter 5. Implementation

and sorts all corrected coincidences into the sinogram.

The fact that multiple COutFOVThread objects are accessing a shared COutFOVMatrix

object at the same time requires synchronization (cf. chapter 4). Within the movement correction

application, the synchronization of the data access with the Out-of-FOV matrix is implemented

by logically dividing the data area of the matrix into sections that are protected by QMutex

objects. As soon as an Out-of-FOV thread wants to access a data area it locks it with a mutex.

Other OFC threads trying to access the same area are then not able to work on the same area

at the same time. However, the access to this data areas is registered in a separate queue in

each OFC thread so that if one OFC thread cannot access a particular data area, it proceeds

with the next one and queues the computation of that locked area for a later time. This way,

all OFC threads can operate on the same data matrix without waiting until another one has

finished its computations.

5.4 User Interface

The implementation of the user interface concentrated on the required user interface types

defined in chapter 3. The previous experimental implementation of the movement correction

supported the use of a command-line interface only, which was a severe limitation for its usability

in routine operation and a graphical user interface is therefore an important key feature.

Nevertheless, an advanced command-line interface was implemented, to support the already

discussed needs of the scientists at the PET center.

5.4.1 Graphical Interface

The Qt framework was chosen as the graphical user interface development kit. Due to the

different discussed use cases the graphical interface has been implemented by separating the

GUI elements into the two main use cases, Movement Correction and Calibration. Aside from

the main window and menu bar, implemented by the CMainWindow and CMainMenuBar classes,

the functionality of these two use cases was graphically separated by dividing the GUI with tabbed

panes.

This tabbed browsing functionality has been implemented in the CMainWidget class of the

application. The use of Qt’s QTabWidget class within the main widget allows to dynamically

show or hide a specific tab, e.g. allowing to show and hide the CCalibrateWidget as soon as

the user requests the novice or expert mode of the application.

Figure 5.10 illustrates the different class relationships between the main GUI classes of the

application. The fact that all relationships shown in this figure represent a [1:1] relation was

used to design the classes as so called singleton classes. By using this type of design pattern for

a class, only a single instance of a class is guaranteed to exist during runtime [GHJV03]. This

ensures an additional safety during the development of the graphical user interface and makes



5.5 Advanced Memory Management 63

CMainWindow

QMainWindow

CMainWidget

CMainMenuBar

CMainToolBar

CCalibrateWidget CMoveCorrWidget

1
1

1
11

1

1
1

1
1

Figure 5.10: Class and Collaboration diagram of Main GUI classes

it easier to maintain the different GUI elements within an application.

5.4.2 Command-Line Interface

Another possibility to use the movement correction is by using the command-line interface (CLI).

To distinguish between a GUI dependent application start and a command line based start, the

application checks if the user has supplied some additional commands at the command-line (in

argc/argv). If so, this command string is forwarded by a CCmdLineStart object to a CGetOpt

object that handles all available command line options.

The object-oriented implementation of the command line parsing classes, as shown in fig-

ure 5.11, allows to manage an unlimited number of options. Options are separated in several

CGetOptCategory category objects depending on their purpose. And each of these category

objects contain several command line options. During the parsing of the command line, through

the CCmdLineStart object, all option objects within the CGetOpt object are checked for validity.

If true, a special method within the command line start class is executed which processes the

requested operation.

5.5 Advanced Memory Management

Having numerous threads computing in parallel generally causes an increase of the total memory

usage of an application. In our case, the fact that for every thread several sub-threads are

computing on the movement correction, causes a steady increase of the memory usage. For

each additional frame computation running in parallel, the overall memory usage increases by

600MB. This is due to the fact that every frame computation carries a 300MB large sinogram



64 Chapter 5. Implementation

CGetOpt
...
+ parse(argc: int, argv: char**): void
+ addCategory(): 
+ addOption(): 
...

CCmdLineStart
- m_pGetOpt: CGetOpt 
+ parse(argc: int, argv: char**): void
...

1

1
CGetOptOption

- optionType: Type 
- m_ShortOption: char
- m_pLongOption: char*
...
+ setShortOption(so: char): void
+ setLongOption(lo: char*): void
...

CGetOptCategory
- m_Name: QString 
- m_Description: QString 
+ addOption(): 
...

QPtrList
CGetOptCategory

QPtrList
CGetOptOption

1

*

1

*

QObject

Figure 5.11: Class diagram of Command-Line Management classes

matrix together with an additional Out-of-FOV matrix of the same size.

If we have the application running on a four processor machine with a total of 16GB RAM

available4, the size of required memory temporarly raises above 4GB. Of course, within a 64bit

operating system environment this would not cause any problem. But if the application is

compiled in a 32bit environment, processes (including their threads) allocating more than 4GB

address space end up in a low memory condition. As the movement correction has been planned

as a platform independent application, memory allocation exceptions have been introduced to

handle such a low memory situation. As soon as the application’s wide memory allocation

reaches the 4GB limit, any thread that tries to allocate additional memory will be suspended

with a wait condition (cf. chapter 4). When another thread has finished its computations, it

frees its temporary memory allocations and signals the waiting threads that they can retry to

allocate the required memory and continue with their computations.

4this has been the case during development of the movement correction application.



Chapter 6

Validation

The following sections concentrate on validation of the results produced by the implemented

movement correction.

6.1 Sinogram Sorting

After successful movement correction, the LORs are sorted into a sinogram file. In order to

verify the correct functioning of the developed sorting routine, its results were compared with

sinograms produced with lm sorter, a sinogram sorting tool also developed at the PET center

Rossendorf [Jus00]. The created sinograms of both applications were quantitatively compared

by stripping the non-sensitive sub header data and using the cmp binary comparison tool to

verify that the remaining data is equal. The test was repeated for several data sets and in no

case any difference were found.

The lm sorter application was validated in research with the PET research center Jülich in

2000, therefore the routines creating the sinograms in lmmc are assumed to be correct as well.

6.2 Movement Correction

To be able to verify the correct functioning of the newly implemented movement correction

algorithm, test measurements with a Hoffman brain phantom were performed. This type of

phantom is a device which is used to simulate brain investigations. For the tests the phantom

was filled with a mixture of water (H2O) and 224 MBq of the 18F -FDG tracer substance.

In three successive tests, the phantom was placed at the patient bed and was kept at rest

for the first half of data acquisition time. In five consecutive steps it was then moved during

the second half of the emission scan. In order to verify and track the produced movement, a

6D-body (cf. figure 2.9) was fixed on the phantom. The movements were recorded to a separate

lmmc-readable tracking file.

In the first performed test the Hoffman phantom was moved in axial direction (z), in the

65



66 Chapter 6. Validation

second test in transaxial direction (y), and in the third test it was rotated along the z axes of

the scanner coordinate system until it reached a predefined location. For each test measurement

three images were created. The first one with data acquired during the time the phantom

remained in its rest position and the second with the data from the second half of the acquisition

without any applied movement correction. The third image was again created with the data

from the second half of the acquisition but with application of the movement correction. All

created data sets were reconstructed with the standard routines available on the PET acquisition

computer. The correct functioning of lmmc was finally determined by comparing the uncorrected

and corrected images with the image of the phantom in rest position.

6.2.1 Axial Movement

The movements performed during the first test measurement are illustrated in figure 6.1.

t  (min)

5

10

100 20 30 40

Axial/
Transaxil
Movement

z/y (mm)

Figure 6.1: The manually produced movements of a Hoffman phantom as function of time

during the test measurements with movements in axial (z) and transaxial (y)

direction. The phantom was stepwise moved during a period of 10 minutes

by a maximum of 40 mm.

In a total acquisition time of 10 minutes the phantom was moved 40 mm in axial direction

(z). The reconstructed images are shown in figure 6.2. The top row of the figure shows sagittal

planes of the three reconstructed volumes of the data set in rest position (left panel), of the

uncorrected data set (middle), and the movement corrected data set (right). The middle row

shows the difference between the uncorrected and corrected image, and the image in rest position.

In the bottom row logarithmic intensity-correlation histograms are displayed. In these plots the

x-axis corresponds to the logarithm of the intensity of a voxel1 in the volume of the phantom

in rest position, whereas the y-axis corresponds to the logarithm of the intensity of a voxel in

the uncorrected, respectively corrected volume. The histogram is computed by looping over all

voxels of the volumes to be compared and incrementing the histogram bins according to the
1Short for volume pixel, the smallest distinguishable box-shaped part of a three-dimensional image.



6.2 Movement Correction 67

corresponding voxel intensities. Note, that a comparison of two identical data sets results in a

logarithmic intensity-correlation histogram that follows a diagonal line with a slope of one.

At rest without Correction with Correction

Grayscale
Difference

Image

Intensity-Correlation
Histogram

(logarithmic)

0 4 5

5

32

2

3

4

1

2

0 4 5

5

32

2

3

4

1

2

Figure 6.2: Results of the test measurement with movement in axial direction (z). The

three images displayed in the top row show sagittal planes of the reconstructed

volumes of the data set in rest position (left panel), of the uncorrected data set

(middle), and the movement corrected data set (right). The middle row shows

the difference between the uncorrected and corrected image in rest position.

In the bottom row logarithmic intensity-correlation histograms are displayed.

The image quality has noticeably improved by application of lmmc.

A comparison of the uncorrected and corrected data sets suggests that application of the

movement correction does indeed result in a significant improvement of the image quality. Es-

pecially the image of the uncorrected data set shows a blurring at the top of the image, which

represents the loss of information. Comparing the uncorrected and corrected image, this is much

improved in the corrected data set, which hardly differs in focus from the image in rest position.

This is also confirmed by the difference images and the provided intensity-correlation histograms.

However, the remaining differences are mainly caused by the random nature of the coincidence

registration and tracer decay, but also partly by the remaining discretization limitations of the

movement correction algorithms.



68 Chapter 6. Validation

6.2.2 Transaxial Movement

In analogy to the test measurement with movement in axial direction, the phantom remained

in rest position during the first half of the data acquisition, and was then stepwise moved as

illustrated in figure 6.1, but in transaxial (y) direction. The total acquisition time was 10 minutes

with a maximum transaxial displacement of the phantom of 40 mm.

At rest without Correction with Correction

Grayscale
Difference

Image

Intensity-Correlation
Histogram

(logarithmic)

0 4 5

5

32

2

3

4

1

2

0 4 5

5

32

2

3

4

1

2

Figure 6.3: Similar to figure 6.2 but for test measurement with movement in transaxial

direction (y direction).

Figure 6.3 shows the reconstructed images. The representation of the data is similar to case

with axial movement (cf. figure 6.2), which is described in detail in section 6.2.1. Here the

occurred blurring is visible at the left side of the uncorrected data sets, which is also confirmed

by the difference images at the middle row of the figure. However, in this case the data shows

that lmmc is able to correct movements occurring during data acquisition, thus its application

results in a significant improvement of the image quality and minimizes the information loss.



6.2 Movement Correction 69

6.2.3 Rotational Movement

During this test measurement the Hoffman phantom was stepwise rotated along the z axis during

the data acquisition. In analogy to the previously described tests, it remained in rest position

during the first half of the acquisition to allow the accumulation of enough data for the unmoved

data set.

t  (min)

Rotation
along z-axis

10

20

0 (degree)22◦16.5◦11◦5.5◦

Figure 6.4: Similar to figure 6.1 but for test measurement with rotation along the z-axis.

Figure 6.4 illustrates the applied movements, whereas the total acquisition time was 20

minutes and the maximum angle of rotation was approximately 18◦. Results are shown in figure

6.5, where compared to figure 6.2 and 6.3, the sagittal slices are replaced by transaxial slices.

Again, application of the movement correction results in an almost ideal compensation of

the movement artifacts, where this observation is also supported by the generated intensity-

correlation histograms.



70 Chapter 6. Validation

At rest without Correction with Correction

Grayscale
Difference

Image

Intensity-Correlation
Histogram

(logarithmic)

0 4 5

5

32

2

3

4

1

2

0 4 5

5

32

2

3

4

1

2

Figure 6.5: Results of the test measurement with rotation along z-axis. The three images

at the top show transaxial planes of the reconstructed volumes of the data

set in rest position (left panel), of the uncorrected data set (middle), and the

movement corrected data set (right). The images in the middle row show

the difference between the uncorrected, respectively corrected image, and the

image in reposition is shown. In addition, logarithmic intensity-correlation

histograms are displayed in the bottom row. Similar to the previous tests,

also here the image quality is highly improved by the use of lmmc.

6.2.4 In Vivo

Finally the movement correction implementation was tested with acquisition data from a volun-

teer patient, who agreed to assist in this test prior to a regular whole body examination. The

patient was advised to remain still during the first three minutes of the acquisition. Then he was

asked to turn his head and to remain still in that new position for the rest of the acquisition,

which lasted another three more minutes.

During the entire acquisition period the 6D body discussed in section 2.9 was attached to

the patient’s head allowing to capture the occurred movements. Figure 6.6 shows the tracked

motion of all six degrees of freedom. It shows that the movement included all degrees of freedom

but was dominated by a rotation along the scanners z-axis (dtrack ang1 in figure).

Two data sets were produced, one with application of the movement correction and one

without the correction. Figure 6.7 shows the reconstructed images of these data sets, where



6.2 Movement Correction 71

Figure 6.6: The movement during an in vivo study. The patient was advised to turn the

head after three minutes of data acquisition. The graphs show the tracking

information obtained from the stereoscopic tracking system available at the

PET center with coordinates as defined in figure 2.1.

Coronal Transaxial Sagittal

u
n
co
rr
ec
te
d

co
rr
ec
te
d

Figure 6.7: Reconstructed images of an in vivo study where the patient was advised to

turn the head during the data acquisition. The upper row shows the images

where artifacts and blurring caused by the patient’s movement are especially

visible within the transaxial view. In contrast, the lower row shows the same

acquisition data, but after movement correction with lmmc. The improvement

is obvious.



72 Chapter 6. Validation

three different slices of each image volume are shown. The blurring caused by the movement of

the patient is perfectly visible within the transaxial slice of the uncorrected data set. Again, its

corrected counterpart shows a significant improvement of image quality, as well as the recovery

of important brain structures.

6.3 Performance Comparison

After having verified the accuracy of the implemented movement correction algorithms, perfor-

mance tests were performed. Computation times of the sequential implementation (trans lm)

and the new parallel implementation (lmmc) were recorded during four successive tests (t1 -t4 ),

as listed in table 6.1.

Frames OFC LDC Program Correction + Sorting2

t1 1 1/1/1

normal
trans lm 9:48:25h + 0:30:51h 1

lmmc 2:10:18h 2

enhanced3D
trans lm 25:01:47h + 2:39:50h 3

lmmc 3:10:25h 4

t2 1 4/4/1

normal
trans lm 2:50:37h + 0:32:44h 5

lmmc 2:05:29h 6

enhanced3D
trans lm 17:58:23h + 2:45:11h 7

lmmc 2:57:20h 8

t3 1 8/8/1

normal
trans lm 2:29:57h + 0:32:3h 9

lmmc 2:04:37h 10

enhanced3D
trans lm 17:53:53h + 2:51:55h 11

lmmc 2:58:08h 12

t4 213

1/1/1
normal lmmc 2:34:34h 13

enhanced3D lmmc 3:23:56h 14

4/4/1
normal lmmc 1:17:20h 15

enhanced3D lmmc 1:36:05h 16

Table 6.1: Results of the performance tests (t1 -t4 ). The performance of the sequential im-

plementation (trans lm) was compared to our implemented application (lmmc).

Several different options were used during the tests to show the impact on the

performance.

The tests were performed with listmode data of a 60 min PET study. As the mashing set-

tings of the Out-of-FOV correction, as well as the type of the LOR discretization algorithms

have an deep impact on the performance, t1 -t3 concentrated on varying the settings of these

corrections, thus allowing to draw conclusions on their impact on the movement correction.

2in contrast to lmmc, the trans lm application is not able to sort the corrected LORs in a sinogram - this task

was therefore done by using lm sorter.
3because trans lm does not support multi-frame studies, these tests have been done with lmmc only.



6.4 Summary 73

Test t4 concentrated on analyzing the performance of the movement correction of a multi-

frame study. As the sequential trans lm implementation does not directly support this type

of studies, the tests were performed with the parallel implementation only. Furthermore, as

trans lm does not directly sort the corrected data into a sinogram, the sorting has been done

with the lm sorter command-line tool which was also developed at the PET center.

5.5

t [h]

20.7

1.28

14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

b
et

te
r

lmmc
trans lm

t1 t2 t3 t4

Figure 6.8: Plot illustrating the results of the performance test listed in table 6.1.

Figure 6.8 shows a graph in which all results of the performed tests are shown. To evaluate

the performance improvement, a significant difference in the computation time is especially

obvious between test 3 and 4. Here, in contrast to the > 27h lasting computation of trans lm,

the same type of computation only took around 3 hours with lmmc. This results in a speed up

of factor ≈ 9 due to the parallel execution of the Out-of-FOV correction.

However, since routinely performed PET examinations are generally having multiple frames,

the t4 tests are more suitable for evaluating the usability of lmmc in routine operation. In addi-

tion, analysis and tests showed that the command-line options ”OFC=4/4/1” and ”LDC=enhanced3D”

are the most suitable combination. This takes us to test 16 where the acquisition data of an one

hour routine PET examination was corrected by lmmc in only ≈ 11
2 hours (1:1.5 proportion).

Even if trans lm is not able to handle multi-frame studies, the comparison between test 7

and its multi-frame complement number 16 shows, that due to the parallel implementation of

each frame and its OFC children, the movement correction was sped up by a factor of ≈ 21.

6.4 Summary

The discussed validations and comparisons against the previously existing implementation of

the movement correction (trans lm) have shown the correct functioning of lmmc, and that the

implementation is able to compensate the short comings of this implementation as discussed in

section 3.1.

Especially the comparisons show that in fields of the increased performance the general

usage of a movement correction in PET is greatly improved. With help of this application,



74 Chapter 6. Validation

the PET center Rossendorf accounted for the use of a movement correction within routine

examinations as reasonable. This has not only been accounted due to the improved performance,

but also due to the elimination of the following shortcomings of the previous movement correction

implementation:

• No graphical interface for an intuitive use of the movement correction principles was avail-

able. (trans lm)

• No multi-frame studies were supported. (trans lm)

• The full movement correction implied the sequential application of several different tools

and thus caused additional complexity for the process. (trans lm, lm sorter)

• No parallel sorting of multiple frames was possible. (lm sorter)

• The non object-oriented implementation and the use of different types of programming

languages caused the source code to be hardly maintainable and error prone. (trans lm,

lm sorter)

• Algorithms were mainly implemented in a non reusable fashion. (trans lm, lm sorter)

• Data interfaces to other applications were not available. The import and export of acquis-

ition data was limited to the individual application. (trans lm, lm sorter)



Chapter 7

Future Developments

This chapter briefly reviews possible directions for future developments of lmmc:

• Although not part of this thesis, the possibility to distribute computations on several

different machines was accounted for. During the development of lmmc, all parallel com-

puting related elements (cf. chapter 4) were implemented in a way to enable the export

of computations over a network interface via XML streams (XML-RPC). Therefore, in

future developments of the movement correction this technique should be used to increase

the performance.

• To enable other PET facilities to use lmmc, other scanner and motion tracking system

combinations can be supported. All main data structures and defines are parametrized.

This allows to easily adapt lmmc to scanner and motion tracking system specific details.

• Other data formats like 64bit based listmode formats and the Interfile format1 can be

implemented in a future version of the application. This would allow to directly load and

save data in these formats without conversion by other tools. Again, this would be of

interest for application with other PET scanners.

• Additional tools embedded into the graphical user interface would improve the usability

for quality control purposes. An elementary implementation of such graphical tools has

already been developed but needs to be enhanced to provide a quality control facility for

the application. This would allow the checking the accuracy of the motion tracking system

in given time intervals.

• With a more sophisticated thread distribution, movement correction algorithm perform-

ance can probably be further enhanced. This would require the implementation of a cent-

ralized thread management entity in the thread dispatcher, verifying how many processors

are currently available and assigning priorities to individual threads.

1cf. http://www.keston.com/Interfile/interfile.htm

75

http://www.keston.com/Interfile/interfile.htm


76 Chapter 7. Future Developments

• The intrinsic spatial movement correction can be parallelized by further analysis of the

algorithms. This would allow to speed up the movement correction of a single frame study

or to distribute computational intensive parts to other machines.

• The currently memory intensive implementation can be enhanced to manage the large

amount of required memory in a separate memory management facility. In this facility,

the matrices can be stored in a compressed format, allowing to reduce the total memory

usage, but introducing more overhead. This would enable the use of the application on

computer systems with low memory.

• Existing open-source image reconstruction software [LTJZ03] can be integrated into the

application, allowing to directly generate the final images without having to use the re-

construction software of the PET scanner.

• The multithreaded C++ ECAT6/7 file format implementation can be moved to an own

software development project. This would allow the use in other applications which require

access to ECAT files in a multithreaded or object-oriented environment.



Chapter 8

Summary

Reducing the influence of movements during patient investigations is a persistent topic in

Positron-Emission-Tomography. Therefore, a new movement correction technique has recently

been developed at the PET center Rossendorf/Germany. In contrast to other approaches, this

coincidence based correction provides the possibility to apply the correction directly to the raw

coincidence data (listmode) of the tomograph. It turned out, however, that due to the large

amount of data and the complexity of the involved algorithms, the use of the initial implement-

ation resulted in processing times which were unacceptable for routine operation. Therefore, the

goal of this thesis was the development and implementation of a parallel computing optimized

movement correction method to overcome these restrictions.

To achieve this goal, a dependency analysis of the existing correction algorithms was per-

formed and independent areas of computations were identified. The results of this analysis were

transfered into an object-oriented software engineering process. After the specification of im-

plementation boundaries, the identified use-cases and the application work-flows were described

with the UML to assure reusability and extensibility. The resulting modules were implemen-

ted using the C++ programming language. The parallelized parts were embedded into separate

threads to allow multiprocessor systems to distribute them onto multiple processors. Through-

out the implementation, runtime optimizations for time critical regions were performed. By

using the platform independent GUI and application framework ”Qt”, it was possible to keep

the application portable and to include a user friendly graphical interface which is suitable for

use especially by the technicians of the PET facility. In addition, a module to maintain and

perform calibrations of the motion tracking system was implemented as an integral part of the

application.

Performance evaluations gave the following results: due to the parallel optimization the

processing times were reduced by a factor of ≈13. The data acquisition versus computation ratio

could thus be reduced from approximately 1:20 to 1:1.5 (1h data acquisition : 1.5h movement

correction). This, together with the implemented intuitive GUI enables the use of coincidence

based movement correction in routine patient investigations, thus providing improved tomograph

imaging.

77





Appendix A

User Documentation

A.1 System Requirements

The implemented application (named lmmc) has been developed in C++ using the freely available

platform independent Qt framework. In addition to the availability of the Qt framework, the

application uses the free available mathematical GNU scientific library (GSL).

Platform Operating System Qt version [Qt03] GSL version [GDT03]

SparcTM Solaris 2.8/2.9 3.2.3 1.4

PowerPCTM MacOSX 10.3.1 (Panther) 3.2.3 1.4

x86 Linux 2.4.22 3.2.3 1.4

x86 Microsoft WindowsXP 3.2.3 1.4

Table A.1: The movement correction natively supports different platforms and operating

systems. The table shows the tested platforms and operating systems combin-

ations, as well as the used Qt and GSL library versions.

Fortunately, versions of both exists for all major operating systems. This allows to use the

movement correction application on all modern platforms and operating systems. The platform

and operating system combinations on which the application has been tested are listed in table

A.1.

However, in order to fully benefit from the multithreaded implementation, systems should

have at least 2 processors with a minimum of 2 gigabyte RAM available. In case of this thesis,

the tests were performed on a 64bit UltraSparc-IIITMv480 Sun 4x900MHz multiprocessor system

running under SolarisTM2.9, equipped with a total of 16 gigabyte RAM available.

A.2 Command-Line Options

The use of the lmmc via command-line options was implemented to support batch-processing.

The available command-line options are listed in listing A.1.

79



80 Appendix A. User Documentation

Listing A.1: lmmc command-line options

LMMC − ListMode Movement Correc t i on v0 . 1 2 ( 1 1 . 1 1 . 2 0 0 3 ) [SPARC]

Copyright (C) 2003 by Jens Langner

Usage : lmmc <COMMAND> [OPTIONS ] . . .

Commands :

<no command> − s t a r t LMMC with g raph i c a l user i n t e r f a c e .

c o r r e c t − do a batch l i s tmode c o r r e c t i o n .

s o r t − j u s t s o r t the s p e c i f i e d l i s tmode f i l e s i n to the sinogram .

t ransdata − command to do t rans fo rmat ion matrix computations .

Listmode c o r r e c t i o n and s o r t i n g :

−L, −− l m s f i l e=STRING use in fo rmat ion from l i s tmode study f i l e ( ∗ . lms ) f o r p ro c e s s i ng

−l , −− l m f i l e=STRING use l i s tmode f i l e s ( ∗ . lm ) [ f i l e 1 , f i l e 2 , . . . ]

−f , −− f r m f i l e=STRING use frame d e f i n t i o n f i l e ( ∗ . frm )

−F, −− frm=STRING d i r e c t frame s p e c i f i c a t i o n in sec [ 0 − 9 0 0 , . . . ]

−s , −− s g l f i l e=STRING use s i n g l e s f i l e ( ∗ . s g l )

Correc t ion only :

−t , −− t f m f i l e=STRING use t rans fo rmat ion matrix f i l e ( ∗ . tfm )

−N, −−normmode=0 norma l i za t i on mode

−n, −− normf i l e=STRING norma l i za t i on f i l e s p e c i f i c a t i o n ( ∗ .N)

−m, −− o f c =4/4/1 Out−of−FOV co r r e c t i o n with mash [ RElement/Angle/RingComb ]

−c , −− l d c =2 LOR d i s c r e t i z a t i o n c o r r e c t i o n

[0= di sab led , 1= normal , 2= enhanced3D ]

Output sinogram :

−o, −− o u t f i l e=STRING output sinogram to f i l e ( ∗ . S )

−O, −−outtype=0 sinogram f i l e type

−k, −−msk f i l e=STRING use mask f i l e f o r s p e c i f i n g sinogram study r e l e van t header

data . You can e i t h e r s p e c i f y a ( ∗ . msk ) or ECAT compatible f i l e .

−a, −−acp=2 s p e c i f y used angular compress ion ( mu l t ip l e o f 2 )

−D, −−double [=yes /no ] use double p r e c i s i o n in s t ead o f f l o a t during computations

Thread d i s t r i b u t i o n :

−T, −− s f t =0 max . s imultaneous running Frame threads [0= auto ]

−V, −− so t =0 max . s imultaneous running Out−of−FOV threads [0= auto ]

Transformation computation :

−r , −− t r k f i l e=STRING use t ra ck ing in fo rmat ion f i l e ( ∗ . t rk )

−C, −− c c f i l e=STRING use c r o s s c a l i b r a t i o n t rans fo rmat ion f i l e ( ∗ . cc )

−M, −− t f i l e=STRING f i l ename o f the output t rans fo rmat ion f i l e ( ∗ . tfm )

−b, −− re fbody=1 number o f body with in t ra ck ing data to take as r e f e r e n c e body

−S, −− st ime=0 time with in t ra ck ing f i l e to take as the s t a r t time

−R, −− rt ime=−1 time with in t ra ck ing f i l e to take as the r e f e r e n c e time

Misce l l aneous :

−h, −−help [=yes /no ] d i sp l ay t h i s he lp message

−v, −−verbose [=yes /no ] be a b i t more verbose in commandline mode

−d, −−debug=0 s e t debug l e v e l [0= d i s ab l ed ]

−q, −− qu i e t =0 be qu i e t whi l e p r o c e s s i ng



A.3 Graphical User Interface 81

A.3 Graphical User Interface

The graphical user interface is started by

Figure A.1: Main Window of lmmc

calling lmmc without any command-line op-

tions. It is divided into two main working

areas. The first one consists of graphical ele-

ments to perform movement corrections, the

second one is responsible for administrating

the cross-calibration (cf. section 2.1.1). The

main window is therefore separated with tab

widgets, so that a clear distinction is pos-

sible. Figure A.1 shows a snapshot of the

main window

The following sections will concentrate

on describing all main components of the

graphical user interface together with their

function. Snapshots are going to illustrate

the components wherever applicable.

A.3.1 Main Components

A close look at the top elements of the GUI shows three main components of the application

window. Figure A.2 shows the main menu at the topmost position of the window which can be

Main Menu Clickable toolbar Tab widgets

Figure A.2: The application window of lmmc has three main components. A main applic-

ation menu, a click-able toolbar and two tab widgets for either the movement

correction or cross calibration.

used to load and save lmmc based study files (*.lms), as well as to modify the default settings of

the application. In addition, most of the functionality encapsulated within the main menu is also

available through a separate toolbar underneath the menu. Finally, the tab widgets separating

the different sections of the application are placed below the toolbar and can be used to switch

between the GUI elements of the movement correction and the cross-calibration.



82 Appendix A. User Documentation

A.3.2 Movement Correction Components

The graphical components, which are responsible for setting up the movement correction are

divided into four different graphical areas, as shown in figure A.3.

1 2

3 4

Figure A.3: The GUI components of the movement correction are split into four areas;

the succession 1-4 corresponds to the steps which have to be performed by the

medical technician. In area 1 the motion tracking relevant data are specified.

Area 2 is used to specify the acquisition data of the PET scanner. Area 3

specifies the desired output format and destination. Area 4 is used to set up

computational options and to start the computations.

Each of these areas represent a single step in the preparation for processing the movement

correction. They have been placed within the GUI such that the user has to perform four

different steps to start the processing of the movement correction.

A.3.2.1 Tracking Data GUI Components (1)

Tracking data information can be specified with different methods within lmmc. Figure A.4 shows

one of these methods where the tracking data GUI elements are set to obtain the motion tracking

information from precalculated data. This means, that either an already existing transformation

matrix file (*.tfm) can be specified or a raw motion tracking data file (*.trk) to calculate the

necessary transformation matrices prior to the movement correction. As soon as the movement



A.3 Graphical User Interface 83

Method combobox
to obtain tracking data

Data source combobox
to specify input source

Cross-calibration set and
tracking file to use for
transformation matrix
computations.

Settings for transformation
computations

Status area to signal
if a transformation could
be calculated/loaded.

Allows to export
transformation
information to a file.

Figure A.4: The tracking data GUI elements consist of several comboboxes and filename

specifying text fields. The use of the precalculated data methods is illustrated

where a motion tracking information file (*.trk) is specified. The data con-

tained in this file is then used together with the specified options, e.g. cross

calibration set, to compute the required transformation information.

correction is initiated, the application computes the necessary transformation matrices from the

provided motion tracking data, as discussed in section 2.3. Afterwards, the computed tracking

information can be exported to a transformation matrix file which allows to use it for later runs

by selecting the (*.tfm) mode in the tracking data source combobox.

A.3.2.2 PET Data GUI Components (2)

The right top area of the application can be used to specify the listmode files to be processed

Within a listview, an unlimited number of files can be specified where lmmc does maintain the

correct order of the listed files by itself. In addition, multiframe studies can be specified by

adding the frame boundaries manually or by importing it from a predefined frame specification

file (*.frm). lmmc does ensure the correct sorting within the listview - starting at zero time

and stepwise increasing until the last specified frame. The bottom elements of the PET data

specification area are used to specify the singles rate file and the normalization file provided



84 Appendix A. User Documentation

Listview for specifying
the raw listmode files
for the movement correction

Listview to specify
the number of frames
and their duration

Allows to import
predefined frame
specifications

Options to load scanner
specific data files for the
Normalization Correction

Figure A.5: Graphical elements for specifying the scanner dependent input data are com-

bined within an own graphical area of the GUI. The top listview is used to

specify the listmode data obtained from the tomographic acquisition. In a

second listview the specification of the desired frames can be either manually

specified or loaded from a predefined frame specification file (*.frm). Fur-

thermore, the bottom text fields are used to specify the singles rate file and

the normalization file to perform a Normalization Correction (see section

2.2.1.1).

by the PET scanner. Both are required to calculate the normalization matrix that is used to

perform the Normalization Correction discussed in section 2.2.1.1.

A.3.2.3 Output Format GUI Components (3)

The format and filename in which the movement corrected LORs are saved can be specified

with the graphical elements shown in figure A.6. Currently only the ECAT7 sinogram format

is supported with three different data types (byte/short/float). In addition, an automode is

provided which will automatically determine the correct data type prior to sinogram sorting.

As most of the general output formats support the inclusion of patient specific data within so

called headers, an additional component to either load patient data from other files or to specify

the data manually is provided at the bottom of the output format group.



A.3 Graphical User Interface 85

Sinogram output format
specification

Output filename 
specification

Modify/Load
patient specific data

Figure A.6: The output format and filename can be specified within an own graphical

component. A combobox allows to specify the format, which is currently

limited to ECAT7 formats only. Patient specific header data can be specified

either by manually modifying the current data set or by loading patient data

from other file sources, such as e.g. transmission files.

A.3.2.4 Processing GUI Components (4)

The graphical elements to start the movement correction is shown in figure A.7. Numerical boxes

Out-of-FOV correction
mashing settings RE/AN/RI

Popup a separate 
progress window

Start button
of the movement 
correction

Selected LOR 
discretization mode

Figure A.7: Graphical elements responsible for specifying the computational settings for

the Out-of-FOV and LOR discretization correction.

are used to specify the mashing settings for the Out-of-FOV correction. And the desired LOR

discretization correction mode (normal/enhanced3D) can be set with the middlemost combobox.

By pressing the Start push button, the application checks if all necessary information needed

to starting the movement correction was provided. If this is found o be the case, all main GUI

elements are ghosted while lmmc is processing. Furthermore, a small button at the bottom

right corner of the component allows to open a progress window in which the progress of a

computation is illustrated as shown in figure A.8. This window shows the current status and



86 Appendix A. User Documentation

Figure A.8: Progress window of lmmc. It shows the current status and percentile progress

of each involved thread of the movement correction computations.

percentile progress of each thread, respectively frame. It allows the user of lmmc to track the

progress of the computations as well as breaking the computations by pushing the push button

in figure A.7 a second time.



A.3 Graphical User Interface 87

A.3.3 Cross-Calibration Components

The cross-calibration tab has been split into three different areas, cf. figure A.9. In area one

1

2

3

Figure A.9: View at the cross-calibration GUI components of lmmc. Within three main

areas the user can define several calibration specific settings. In area one a

listview of the stored calibration data is shown together with toolbuttons to

import/export the data. Area two can be used to specify the data source

from which the tracking and PET scanner cross-calibration dependent data

can be obtained. Within area three statistical GUI elements are combined

into different separating tab widgets.

elements are provided to maintain a database of performed room and body calibrations as well as

toolbuttons to import and export calibration specific data to standardized files. Area two allows

to specify the data source of the calibration data for both, the motion tracking system and the

PET scanner, as well as to start the cross-calibration computation. Area number three is used

to output statistical data concerning computation and results of the cross-calibration. Within

three separate tab widgets, all computational data is presented to the scientist administrating

the cross-calibration.



88 Appendix A. User Documentation

A.3.3.1 Data Storage Components (1)

Each performed cross-calibration is stored within an application wide configuration file. These

calibrations are then loaded upon application start and added to the listview, as shown in figure

A.10. Toolbuttons at the bottom of the listview allow to add and delete calibrations from the

Cross-Calibration
Listview item
with unique ID string

Toolbutton to
export calibration
data to standarized 
files

Toolbutton to
import calibration
data from standarized 
files

Area showing
calibration specific
information

Figure A.10: A separate GUI component is used to display the currently available cross-

calibrations. Together with toolbuttons to add and delete a specific calibra-

tion from the list, import and export buttons allow to exchange information

with other applications. A status information group always displays the

calibration specific information.

maintained calibration data storage. Import and export of a calibration is performed by using

the named toolbuttons, which requests the file name and directory for this operation. In addition

to the listview a textual information group at the bottom of the component shows the relevant

information of the currently selected calibration.



A.3 Graphical User Interface 89

A.3.3.2 Data Source Components (2)

The data from which the cross-calibration is computed can be specified by using the graphical

elements shown in figure A.11. Two comboboxes are used to specify the data sources of the

Tracking system data source combobox 
for calibration computation.

PET scanner data source
combobox for calibration
computation.

Pushbutton to
start calibration computations.

Textfield to specify
data file.

Pushbutton to start network
communication

Figure A.11: Within the upper GUI elements of the showed cross-calibration component,

the different data source can be specified from which the computation will

retrieve their data prior to the calculations.

tracking system and PET scanner. For specification of the tracking data source the user can

select remote (network) as the data source. The receive pushbutton is used to start a network

communication to the motion tracking system and directly receives the tracking information

required to compute the cross-calibration data.



90 Appendix A. User Documentation

A.3.3.3 Statistical Components (3)

During the tracking data acquisition for the cross-calibration computations, statistical data is

displayed in the component shown in figure A.12. The component contains three areas that are

Tab widgets to switch
between the different
provided information.

Plot showing the
spatial deviation of
the received
tracking information

During cross-calibration
this value should tend
to zero.

Slider to change the
plot granularity.

Figure A.12: A separate component within the cross-calibration tab is used to provide

statistical GUI elements. In addition to a general information field and a

view of the calculated cross-calibration matrix, an interactive 2D plot is used

to illustrate the spatial deviation of the motion information, thus allowing

to draw conclusions on the stability of the received signal.

separates with tab widgets. Each of these widgets can be used to get additional information

either during data acquisition or after having computation of the cross-calibration. In figure

A.12, the implemented plot widget is shown that displays the stability of the motion tracking

information received during the network based data acquisition. It shows the relative deviation

of the tracking information since start of the data acquisition. However, in case of a motion

tracking data acquisition for computing the cross-calibration this deviation should not vary to

much. The slider widget at the bottom of the component is used to change the granularity of

the time resolution of the plot.

A.3.4 Application Settings Components

Figure A.13 shows the application wide settings window that is opened from the settings item of

the application’s main menu. Two tab widgets provide the user with several graphical elements

to change settings, which are either application or user dependent. The figure shows the active



A.4 Cross-Platform GUI Layout 91

Tab widgets categorizing 
the settings

Combobox to
select used Tracking
System

Network settings for
network 
communication

Checkbox to select expert or 
novice mode of application.

Figure A.13: The settings window dialog provided by lmmc. It controls application and

user wide settings which are saved to different XML files upon closing the

dialog. Tab widgets distinguish between different settings. The tracking

system tab is shown that allows to set the application wide network set-

tings for retrieving the motion tracking information. In addition, an expert

mode checkbox allows to show and hide different GUI elements of the main

window.

tracking system tab with elements to set the type of the tracking system as well as the settings

for remote communication. A checkbox is included to switch between an expert and novice

mode. In contrast to the expert mode, the novice mode hides several GUI elements of the whole

application which are not necessary for routine operation; this can simplify the usage of the GUI

for many users who are not so familiar with all the available functionality of the application.

A.4 Cross-Platform GUI Layout

As a cross-platform application, the source code of lmmc can be compiled out of the box on

many platforms (see section A.1). This implies the Look & Feel of the graphical user interface.

Therefore, figure A.14 shows lmmc running on two different operating system with having the

same graphical layout, thus providing the same graphical elements and functionality.



92 Appendix A. User Documentation

Unix (SUN Solaris) 
version

MacOSX Panther 
version

Figure A.14: Two snapshots of the main view of the lmmc application. Usage of the cross-

platform Qt framework allowed not only to maintain a single source code

base for different platforms, but also to design the GUI layout in a platform

independent way. Here the MacOSXTMcompiled version is shown together

with the version compiled under SolarisTM. The layout of both GUI look

and act equally so that the same Look & Feel is ensured over all supported

platforms (cf. section A.1)



Appendix B

Source Code Structure

The following list gives an overview of the chosen directory structure for organizing the source

code within the development environment. Aside from the C++ source code of the classes, which

reside in the src directory, a documentation directory doc includes user and developer specific

documentation. The developer specific documentation has been automatically generated by a

source code processing tool called doxygen1.

Main directory

Developer documentation

User documentation

Documentation

Main sourcecode

Configuration Management Classes

Movement Correction Classes

ECAT File I/O Classes

Command-Line option Classes

Graphical User Interface Classes

Images for GUI

Includes with parameterized data

Mathematical Interface Classes

PET dependant Calibration Classes

Tracking System Calibration Classes

The following sections will list all main directories of the source code directory, listing each

source code file together with its classes and a short description.

1cf. http://www.doxygen.org/

93

http://www.doxygen.org/


94 Appendix B. Source Code Structure

B.1 C++ classes in module - src

These are the main C++ class files located within the main module src.

Files Classes Description

main.cpp - Entry point and preprocessing of command

line parameters.

CCmdLineStart.cpp

CCmdLineStart.h

CCmdListStart Main command-line parsing class of the

application.

CDebug.cpp

CDebug.h

CDebug Debugging class allowing to output runtime

information.

B.2 C++ classes in module - config

The following classes manage the configuration data. This is done in separate XML trees provid-

ing import and export functions. The configuration is split into a user specific configuration

allowing each user to have his own environment.

Files Classes Description

CLMMCConfig.cpp

CLMMCConfig.h

CLMMCConfig Main configuration class managing the

sub-configuration classes.

CCalibrationConfig.cpp

CCalibrationConfig.h

CCalibrationConfig Calibration specific configuration data.

CCorrectionConfig.cpp

CCorrectionConfig.h

CCorrectionConfig Configuration data depending on the

movement correction.

CTrackingConfig.cpp

CTrackingConfig.h

CTrackingConfig Tracking system specific configuration.

CMiscUserConfig.cpp

CMiscUserConfig.h

CMiscUserConfig Class for managing the individual

application settings for an user.



B.3 C++ classes in module - correction 95

B.3 C++ classes in module - correction

The classes implementing the movement correction algorithms are combined in an own correction

module in the source code hierarchy. This includes the intrinsic LOR processing classes to pro-

cess the movement corrections for any LOR.

Files Classes Description

CConvTablesFacade.cpp

CConvTablesFacade.h

CConvTablesFacade Class that accommodates calculated data

matrices.

CLORProcessor.cpp

CLORProcessor.h

CLORProcessor The main movement correction processing

class.

CPreProcessThread.cpp

CPreProcessThread.h

CPreProcessThread Thread class that is used to preprocess

data matrices prior to the correction.

CThread.cpp

CThread.h

CThread Base class of any thread within lmmc.

CThreadDispatcher.cpp

CThreadDispatcher.h

CThreadDispatcher Main dispatcher for distributing the

computations.

CListModeFile.cpp

CListModeFile.h

CListModeFile Entity class for a single listmode file.

CListModeFilePool.cpp

CListModeFilePool.h

CListModeFilePool Container class for managing several

listmode files at once.

CDeadTimeCorrMatrix.cpp

CDeadTimeCorrMatrix.h

CDeadTimeCorrMatrix Storage class for the dead time matrix data.

CNormMatrix.cpp

CNormMatrix.h

CNormMatrix Storage class for normalization matrix data.

CSinglesFile.cpp

CSinglesFile.h

CSinglesFile Entity class for single singles file.

CSinoBuilderThread.cpp

CSinoBuilderThread.h

CSinoBuilderThread Thread class for sorting the data in the

final sinogram.

CSinoFrame.cpp

CSinoFrame.h

CSinoFrame Entity class representing a single frame.

CSinoFramePool.cpp

CSinoFramePool.h

CSinoFramePool Container class managing several frames at

once.

CSinoMatrix.cpp

CSinoMatrix.h

CSinoMatrix Storage class representing a single matrix

within a sinogram.

CSinoSegment.cpp

CSinoSegment.h

CSinoSegment Storage class managing a single segment of

a sinogram.

COutFOVCorrThread.cpp

COutFOVCorrThread.h

COutFOVCorrThread Thread class managing all Out-of-FOV

corrections of a frame.

COutFOVMatrix.cpp

COutFOVMatrix.h

COutFOVMatrix Storage class managing a single

Out-of-FOV matrix.

CTransMatrix.cpp

CTransMatrix.h

CTransMatrix Storage class managing a single

transformation information.

CTransMatrixPool.cpp

CTransMatrixPool.h

CTransMatrixPool Contain class managing several

transformation information at once.



96 Appendix B. Source Code Structure

B.4 C++ classes in module - ecat

The output file I/O functionality has been implemented in an encapsulated library interface.

Still part of the development sources of this movement correction application, they are located

within the ecat module.

Files Classes Description

CECATDirectory.cpp

CECATDirectory.h

CECATDirectory Class representing the matrix directory

within an ECAT file.

CECATDirectoryItem.cpp

CECATDirectoryItem.h

CECATDirectoryItem Entity class representing a single matrix

entry within the directory.

CECATFile.cpp

CECATFile.h

CECATFile Main ECAT file interface class.

CECATMainHeader.h CECATMainHeader Template class representing a version

independent main header of an ECAT file.

CECATSubHeader.h CECATSubHeader Template class representing a version

independent sub header of an ECAT file.

CECAT7MainHeader.cpp

CECAT7MainHeader.h

CECAT7MainHeader Data class representing a main header

version 7.

CECAT7SubHeaderAttenCorr.cpp

CECAT7SubHeaderAttenCorr.h

CECAT7SubHeaderAttenC Data class representing an attenuation

correction sub header version 7.

CECAT7SubHeaderImage.cpp

CECAT7SubHeaderImage.h

CECAT7SubHeaderImage Data class representing an Image sub

header version 7.

CECAT7SubHeaderNorm.cpp

CECAT7SubHeaderNorm.h

CECAT7SubHeaderNorm Data class representing a 2D-Normalization

sub header version 7.

CECAT7SubHeaderNorm3D.cpp

CECAT7SubHeaderNorm3D.h

CECAT7SubHeaderNorm3D Data class representing a 3D-Normalization

sub header version 7.

CECAT7SubHeaderPolarMap.cpp

CECAT7SubHeaderPolarMap.h

CECAT7SubHeaderPolarM Data class representing a PolarMap sub

header version 7.

CECAT7SubHeaderScan.cpp

CECAT7SubHeaderScan.h

CECAT7SubHeaderScan Data class representing a 2D-Sinogram sub

header version 7.

CECAT7SubHeaderScan3D.cpp

CECAT7SubHeaderScan3D.h

CECAT7SubHeaderScan3D Data class representing a 3D-Sinogram sub

header version 7.

B.5 C++ classes in module - getopt

Command-Line options are generally managed with a so called getopt() C-function. As the im-

plemented application is using C++ as the main programming language an own, object-oriented

variant of the getopt functionality has been implemented in a separate module.

Files Classes Description

CGetOpt.cpp

CGetOpt.h

CGetOpt Command-Line options management class.



B.6 C++ classes in module - gui 97

B.6 C++ classes in module - gui

All class files of the graphical user interface are encapsulated in the gui module. Depending

on the functionality of each class they are separated in own sub-modules. Starting at the main

GUI classes the following list represents the graphical entry point classes of the application.

Files Classes Description

CMainMenuBar.cpp

CMainMenuBar.h

CMainMenuBar GUI class managing the menu bar of the

application.

CMainToolBar.cpp

CMainToolBar.h

CMainToolBar GUI class managing the tool bar of the

application.

CMainWidget.cpp

CMainWidget.h

CMainWidget GUI class representing the main widget.

CMainWindow.cpp

CMainWindow.h

CMainWindow GUI class representing the main window.

B.6.1 C++ classes in submodule - gui/calibration

The following list contains all GUI classes used by the calibration functionality of the application.

Files Classes Description

CCalibrateWidget.cpp

CCalibrateWidget.h

CCalibrateWidget Main GUI tabwidget of calibration.

CBodyCalibrationItem.h CBodyCalibrationItem Body calibration QListviewItem.

CRoomCalibrationItem.h CRoomCalibrationItem Room calibration QListviewItem.

B.6.2 C++ classes in submodule - gui/plot

Some elementary 2D graphing classes have been implemented to allow the drawing of statistical

plots.

Files Classes Description

CPlot2DWidget.cpp

CPlot2DWidget.h

CPlot2DWidget Main 2D based plotting class.

CPlotBase.cpp

CPlotBase.h

CPlotBase Base class for the plotting functionality.

CPlotCursor.cpp

CPlotCursor.h

CPlotCursor Class representing a cursor in a single

plotting instance.

CPlotTrace.cpp

CPlotTrace.h

CPlotTrace Class allowing to attach traces on a 2D plot

object.



98 Appendix B. Source Code Structure

B.6.3 C++ classes in submodule - gui/correction

All graphical elements of the movement correction functionality have been encapsulated in a

separate directory. These classes include widgets and dialog classes to provide a graphical user

interface to control the movement correction.

Files Classes Description

CMoveCorrWidget.cpp

CMoveCorrWidget.h

CMoveCorrWidget Main GUI tabwidget of the movement

correction.

COutputFormatCorrWidget.cpp

COutputFormatCorrWidget.h

COutputFormatCWidget Subwidget managing settings on the output

formats.

CProcessingCorrWidget.cpp

CProcessingCorrWidget.h

CProcessingCorrWidget Subwidget managing settings on the

movement correction.

CScannerDataCorrWidget.cpp

CScannerDataCorrWidget.h

CScannerDataCorrWidget Subwidget managing settings of the input

PET scanner data.

CListModeFileItem.h CListModeFileItem QListviewItem inherited class storing a

listmode file.

CSinoFrameItem.h CSinoFrameItem QListviewItem inherited class storing a

single sinogram frame.

CTrackingDataCorrWidget.cpp

CTrackingDataCorrWidget.h

CTrackingDataCWidget Subwidget managing settings of the input

tracking system data.

CProgressInfoDialog.cpp

CProgressInfoDialog.h

CProgressInfoDialog Dialog class managing the progress info

dialog.

CProgressListItem.h CProgressListItem Base class for other ProgressItem classes.

CFrameProgressItem.h CFrameProgressItem QListviewItem inherited class to signal a

frame based progress.

CThreadProgressItem.h CThreadProgressItem QListviewItem inherited class to signal a

thread based progress.

B.6.4 C++ classes within submodule - gui/settings

The preferences of the application are by XML managing configuration classes but are also

manageable through a separate dialog in the graphical user interface.

Files Classes Description

CSettingsDialog.cpp

CSettingsDialog.h

CSettingsDialog Class providing a separate dialog for

configuring the preferences.



B.7 C++ classes in module - math 99

B.7 C++ classes in module - math

The mathematical functionality has been implemented in these template classes:

Files Classes Description

C2DMatrix.h C2DMatrix Direct access 2D-matrix template class.

C3DMatrix.h C3DMatrix Direct access 3D-matrix template class.

C4DMatrix.h C4DMatrix Direct access 4D-matrix template class.

CVector.h CVector Indirect access matrix template class

representing a 2D vector.

CVectorArray.h CVectorArray Indirect access matrix template class

representing an array of 2D vector.

CVectorMatrix.h CVectorMatrix Indirect access matrix template class

representing an array of 2D vector of the

same length.

B.8 C++ classes in module - tracking

The coordinate calibration management of the application has been separated within own man-

agement classes. These classes manage the cross-calibration of the PET and tracking system

and the tracking system’s own body and room calibration.

Files Classes Description

C3DObject.h C3DObject Base class for all tracking classes managing

multidimensional objects.

C6DBody.cpp

C6DBody.h

C6DBody Class representing a single 6DBody

tracking information.

C3DMarker.cpp

C3DMarker.h

C3DMarker Class representing a single 3DMarker

tracking information.

CBodyCalibration.cpp

CBodyCalibration.h

CBodyCalibration Body calibration management class.

CRoomCalibration.cpp

CRoomCalibration.h

CRoomCalibration Room calibration management class.

CCameraFrame.cpp

CCameraFrame.h

CCameraFrame Storage class representing the data of a

single tracking system frame.

CCoordTransMatrix.cpp

CCoordTransMatrix.h

CCoordTransMatrix Storage class representing a coordinate

transformation.

CTrackData.cpp

CTrackData.h

CTrackData Motion tracking information storage class.



100 Appendix B. Source Code Structure

B.9 C++ classes in module - pet

The pet module contains classes to manage and process the PET data needed for the cross-

calibration.

Files Classes Description

CPETData.cpp

CPETData.h

CPETData Class providing a storage for PET

calibration data.



Theses

• Using the described application, spatial corrections of raw PET acquisition data which

account for the effects of patient movements during the investigation, can be performed

efficiently.

• The optimized and multithreading enabled implementation of the movement correction

allows to process the correction of coincidences with high speed and accuracy.

• The graphical user interface of the application is suitable for use by the medical technicians.

Design and implementation of graphical elements ensures an intuitive usage.

• A seperate expert mode in the GUI and the comprehensive implementation of command-

line options provides the necessary functionality for experts working on improving the

movement correction.

• Administration and calibration of the motion tracking system can be performed from with

the application. In addition, a network implementation allows to obtain tracking data

directly from the motion tracking system.

• Direct support of standarized file formats like the input listmode format and the output

of the corrected data in ECAT7 sinogram files allows the usage of existing image recon-

struction software.

• XML based import and export capabilities ensure future compatibility of the application.

The possibility to save all movement correction relevant data in XML files allows to store

the results of the movement correction together with the routinely archived patient data.

• The platform independent implementation in C++ and the use of the cross-platform Qt

framework ensures future extensibility.

• Due to its optimized implementation the movement correction is used at the PET center,

Rossendorf within routine performed head examinations where even small patient move-

ments have an impact on the final tomographic image quality.

101





List of Figures

1.1 Positron-Electron Annihilation process . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Scheme of the Positron-Emission-Tomography . . . . . . . . . . . . . . . . . . . . 3

1.3 Cyclotron for production of 11C, 13N , 15O, 18F . . . . . . . . . . . . . . . . . . . 4

1.4 The ECAT Exact HR+ PET scanner . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5 Layout of detector system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.6 PET scanner 2D/3D Mode principles . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Interleaving Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.8 Axial Acceptance Angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.9 Sinogram Segments for Span 9 and RDmax = 13 . . . . . . . . . . . . . . . . . . 11

1.10 Michelogram for Span 9 and RDmax = 22 [Keh01] . . . . . . . . . . . . . . . . . 12

2.1 The different coordinate systems involved in movement correction. . . . . . . . . 14

2.2 Scheme of Coincidence Position Correction Procedure . . . . . . . . . . . . . . . 16

2.3 Artifacts occurring without Normalization Correction . . . . . . . . . . . . . . . 19

2.4 LOR Discretization Problem due to the performed movement correction . . . . . 20

2.5 Solution of the LOR Discretization Problem due to LOR volumes . . . . . . . . . 21

2.6 Impacts of the Out-of-FOV correction . . . . . . . . . . . . . . . . . . . . . . . . 22

2.7 Plot illustrating the transformation discretization . . . . . . . . . . . . . . . . . . 23

2.8 ARTtrackTMMotion Tracking System . . . . . . . . . . . . . . . . . . . . . . . . 24

2.9 Used 6D-body during a PET head examination . . . . . . . . . . . . . . . . . . . 25

2.10 Special ARTtrack calibration bodies . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Schema of a PET examination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 Existing movement correction work-flow and implementation boundaries. . . . . 31

3.3 The listmode File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 The ECAT6/7 File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Dependency graph of Movement Correction entities . . . . . . . . . . . . . . . . . 45

4.2 Stage 1 - Frame based dependency splitting . . . . . . . . . . . . . . . . . . . . . 45

4.3 Stage 2 - Out-of-FOV based dependency splitting . . . . . . . . . . . . . . . . . . 46

4.4 Stage 3 - Sinogram sorting based dependency splitting . . . . . . . . . . . . . . . 47

103



104 LIST OF FIGURES

4.5 Hierarchical thread modeling including a Thread Dispatcher . . . . . . . . . . . . 48

5.1 Class hierarchy of Direct-Access matrix classes . . . . . . . . . . . . . . . . . . . 52

5.2 Class hierarchy of Indirect-Access matrix classes . . . . . . . . . . . . . . . . . . 53

5.3 Class diagram of Listmode File Management classes . . . . . . . . . . . . . . . . 54

5.4 Class diagram of ECAT C++ file I/O Library classes . . . . . . . . . . . . . . . . 55

5.5 Class diagram of Tracking System Data classes . . . . . . . . . . . . . . . . . . . 56

5.6 Use-Case diagram of Movement Correction Application . . . . . . . . . . . . . . 58

5.7 Class diagram of Calibration Management classes . . . . . . . . . . . . . . . . . . 59

5.8 Collaboration diagram of Movement Correction classes . . . . . . . . . . . . . . . 60

5.9 Class diagram of Multithreading classes . . . . . . . . . . . . . . . . . . . . . . . 61

5.10 Class and Collaboration diagram of Main GUI classes . . . . . . . . . . . . . . . 63

5.11 Class diagram of Command-Line Management classes . . . . . . . . . . . . . . . 64

6.1 Performed Axial and Transaxial Movement during Verification . . . . . . . . . . 66

6.2 Results of Axial Movement Correction Verification . . . . . . . . . . . . . . . . . 67

6.3 Results of Transaxial Movement Correction Verification . . . . . . . . . . . . . . 68

6.4 Performed Rotational Movement during Verification . . . . . . . . . . . . . . . . 69

6.5 Results of Rotational Movement Correction Verification . . . . . . . . . . . . . . 70

6.6 In Vivo Movement Verification Graph . . . . . . . . . . . . . . . . . . . . . . . . 71

6.7 Results of In Vivo Movement Correction Verification . . . . . . . . . . . . . . . . 71

6.8 Performance Comparison Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

A.1 Main Window of lmmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.2 Main Components of lmmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A.3 Movement Correction Components of lmmc . . . . . . . . . . . . . . . . . . . . . 82

A.4 Tracking Data GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.5 PET Data GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A.6 Output Format GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.7 Processing GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.8 Progress Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A.9 Cross-Calibration GUI Components . . . . . . . . . . . . . . . . . . . . . . . . . 87

A.10 Cross-Calibration Data Storage GUI Components . . . . . . . . . . . . . . . . . . 88

A.11 Cross-Calibration Data Source GUI Components . . . . . . . . . . . . . . . . . . 89

A.12 Cross-Calibration Statistical GUI Components . . . . . . . . . . . . . . . . . . . 90

A.13 Settings window of lmmc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

A.14 GUI of lmmc running under Unix/MacOSX . . . . . . . . . . . . . . . . . . . . . 92



List of Tables

1.1 Some tracers and their application in Positron-Emission-Tomography . . . . . . . 4

1.2 Physical characteristics of common scintillator crystals [Pie99] . . . . . . . . . . . 7

1.3 Default parameters of a 2D/3D measurement . . . . . . . . . . . . . . . . . . . . 12

2.1 Scanner specific parameters and notation for the Coincidence Position Correction 17

3.1 Comparison of common Programming Languages . . . . . . . . . . . . . . . . . . 32

3.2 Comparison of GUI frameworks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 ARTtrackTMmotion tracking ASCII data identifiers . . . . . . . . . . . . . . . . . 37

3.4 DTrack remote-control command strings . . . . . . . . . . . . . . . . . . . . . . . 38

6.1 Performance Comparison Table - trans lm/lmmc . . . . . . . . . . . . . . . . . . 72

A.1 Tested platform and operating system combinations . . . . . . . . . . . . . . . . 79

105





Listings

4.1 Use a QMutex to protect shared data . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Use a QSemaphore to manage thread resources . . . . . . . . . . . . . . . . . . . 43

4.3 Use a QWaitCondition to let threads communicate . . . . . . . . . . . . . . . . . 44

4.4 Use the connect() method to use the signal-slot mechanism of Qt . . . . . . . . 48

4.5 Use the Qt event system via an own customEvent() method . . . . . . . . . . . 49

5.1 Using XML to map your data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

A.1 lmmc command-line options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

107





Abbreviations

lmmc . . . . . . . . . . . . . ListMode Movement Correction

ANSI . . . . . . . . . . . . American National Standards Institute

API . . . . . . . . . . . . . Application Programming Interface

ASCII . . . . . . . . . . . American Standard Code for Information Interchange

CCD . . . . . . . . . . . . Charge-Coupled Device

CG . . . . . . . . . . . . . . Center of Gravity

CLI . . . . . . . . . . . . . . Command Line Interface

CPU . . . . . . . . . . . . . Central Processing Unit

CT . . . . . . . . . . . . . . X-ray computed tomography

ECG . . . . . . . . . . . . Electrocardiogram

FOV . . . . . . . . . . . . . Field of View

FWHM . . . . . . . . . . Full-Width Half-Maximum

GSL . . . . . . . . . . . . . GNU Scientific Library

GTK . . . . . . . . . . . . Gimp Toolkit

GUI . . . . . . . . . . . . . Graphical User Interface

I/O . . . . . . . . . . . . . . Input/Output

IDL . . . . . . . . . . . . . Interactive Data Language

LDC . . . . . . . . . . . . . LOR discretization correction

LOR . . . . . . . . . . . . . Line of Response

MRI . . . . . . . . . . . . . Magnetic Resonance Imaging

OFC . . . . . . . . . . . . . Out-of-FOV Correction

OOP . . . . . . . . . . . . Object-Oriented Programming

PET . . . . . . . . . . . . . Positron-Emission-Tomography

POSIX . . . . . . . . . . Portable Operating System Interface

ROI . . . . . . . . . . . . . Region of Interest

RPC . . . . . . . . . . . . . Remote Procedure Call

SMP . . . . . . . . . . . . . Symmetric Multi Processing

UDP . . . . . . . . . . . . User Datagram Protocol

UML . . . . . . . . . . . . Unified Modeling Language

XML . . . . . . . . . . . . eXtensible Markup Language

109





Bibliography

[Amd67] G. M. Amdahl. Validity of single-processor approach to achieving large-scale com-

puting capability. Proceedings of AFIPS Conference, Reston, VA., pages 483–485,

1967. 41

[ART02] A.R.T. - Advanced Realtime Tracking GmbH. ARTtrack1 and DTrack technical

documentation, 2002. http://www.ar-tracking.de/. 37

[Büh03] P. Bühler. An accurate method for correction of movement in pet. Technical report,

PET research center Rossendorf, 2003. vi, 13, 22, 27

[CGN95] M. Casey, H. Gadagkar, and D. Newport. A component based method for normal-

ization in volume pet. 3rd int. Conf. on Three-dimensional image reconstruction in

radiology and nuclear medicine, pages 67–71, 1995. 19

[Col85] P. Collard. A file organization for image processing. Proceedings of the Digital

Equipment Users Society, pages 163–164, 1985. 35

[Con03] World Wide Web Consortium. eXtensible Markup Language (XML), 2003. http:

//www.w3.org/XML/. 57

[Dav55] C. M. Davisson. Interaction of gamma radiation with matter. North-Holland Pub-

lishing Company, Amsterdam, 1955. 6

[ECA99] CTI PET Systems, Inc. ECAT Software Operating Instructions, 1999. 36

[GDT03] M. Galassi, J. Davis, and J. Theiler. GNU Scientific Library Version 1.4, 2003.

http://sources.redhat.com/gsl/. 53, 79

[GHJV03] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of

Reusable Object-Oriented Software. Addison-Wesley, 26. edition, 2003. 62

[Gro03] Object Management Group. Unified Modeling Language Version 2.0, 2003. http:

//www.omg.org/uml/. 51

[HHPK81] E. J. Hoffman, S.-C. Huan, M. E. Phelps, and D. E. Kuhl. Quantification in Positron

Emission Computed Tomography: 4.Effect of Accidental Coincidences. Journal of

Computer Assisted Tomography, 1981. 5

111

http://www.ar-tracking.de/
http://www.w3.org/XML/
http://www.w3.org/XML/
http://sources.redhat.com/gsl/
http://www.omg.org/uml/
http://www.omg.org/uml/


112 BIBLIOGRAPHY

[Hou72] G. N. Hounsfield. A method of and apparatus for examination of a body by radiation

such as X or gamma radiation. The Patent Office, London, 1972. v

[Jus00] U. Just. Sammlung der Einzelereignisse einer PET-Kamera, Listmodmessung

und Sortieren nach beliebigen Kriterien. Msc thesis, Hochschule für Technik und

Wirtschaft Dresden (FH), 2000. 36, 65

[Keh01] F. Kehren. Vollständige iterative Rekonstruktion von dreidimensionalen Positronen-

Emissions-Tomogrammen unter Einsatz einer speicherresidenten Systemmatrix auf

Single- und Multiprozessor-Systemen. PhD thesis, Forschungszentrum Jülich, 2001.

4, 5, 6, 9, 12, 103

[Lan02] J. Langner. Parallel programming support within the linux operating system.

Technical report, Queensland University of Technology, Brisbane, 2002. http:

//www.jens-langner.de/ftp/ParComp.pdf. 41

[LH99] C. S. Levin and E. J. Hoffmann. Calculation of positron range and its effect on the

fundamental limit of positron emission tomography system spatial resolution. Physics

in Medicine and Biology, 1999. 3

[LTJZ03] C. Labbe, K. Thielemans, M.W. Jacobson, and A. Zverovich. Software for Tomo-

graphic Reconstruction (STIR) Version 1.1, 2003. http://stir.irsl.org/. 76

[Nic98] T. Nichols. HR+ List Mode Format, 1998. Technical note. 35

[Oes98] B. Oestereich. Objektorientierte Softwareentwicklung: Analyse und Design mit der

UML. Oldenbourg, fourth edition, 1998. 51

[Pie99] U. Pietrzyk. Positron Emission Tomography: Physical Background and Applications.

Shaker-Verlag Aachen, 1999. 7, 105

[PTVF92] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery.

Numerical Recipes in C. Cambridge University Press, second edition, 1992. 15, 23

[Qt03] Trolltech Inc. Qt: A multiplatform, C++ application development framework, 2003.

http://www.trolltech.com/. 79

[Sie96] Siemens AG. Siemens ECAT EXACT HR+ Operating Instructions, März 1996. Part

Number 9300030-000. 10, 11

[VBTM03] Peter E. Valk, Dale L. Bailey, David W. Townsend, and Michael N. Maisey. Positron

Emission Tomography. Springer-Verlag London, 2003. 1, 5

[WWH88] K. Wienhard, R. Wagner, and W.-D. Heiss. Grundlagen und Anwendungen der

Positronen-Emissions-Tomographie. Springer-Verlag Berlin, 1988. 6

http://www.jens-langner.de/ftp/ParComp.pdf
http://www.jens-langner.de/ftp/ParComp.pdf
http://stir.irsl.org/
http://www.trolltech.com/

	Title
	Contents
	 Introduction
	1 Positron-Emission-Tomography
	1.1 Physical Fundamentals
	1.2 Coincidence Tomography
	1.3 Quality Limitations
	1.3.1 Physical Influences
	1.3.1.1 Positron Lifetime and Angular Deviation
	1.3.1.2 Photon Attenuation
	1.3.1.3 Isotope Lifetime

	1.3.2 Scanner Influences
	1.3.2.1 Random Coincidences
	1.3.2.2 Scattered Coincidences
	1.3.2.3 Variable Detector Sensitivity
	1.3.2.4 Electronic Dead Time
	1.3.2.5 Crystal Characteristics

	1.3.3 External Influences
	1.3.3.1 Organ Movement
	1.3.3.2 Patient Movement


	1.4 Quantification
	1.5 The PET Scanner - ECAT EXACT HR+

	2 Coincidence Position Correction
	2.1 Different Coordinate Systems
	2.1.1 Cross-Calibration
	2.1.2 Spatial Movement

	2.2 Position Correction Procedure
	2.2.1 Problems and Solutions
	2.2.1.1 Normalization Correction
	2.2.1.2 LOR Discretization Correction
	2.2.1.3 Out-of-FOV Correction


	2.3 Transformation Discretization
	2.4 ARTtrack™Motion Tracking System

	3 Implementation Aspects
	3.1 Existing Solutions
	3.2 Requirement Analysis
	3.2.1 User Requirements
	3.2.2 Developer Requirements

	3.3 Specification
	3.3.1 Internal Interfaces
	3.3.1.1 Programming Language
	3.3.1.2 GUI Framework
	3.3.1.3 Multithreading Framework

	3.3.2 External Interfaces
	3.3.2.1 PET Listmode Format
	3.3.2.2 ECAT File Format
	3.3.2.3 Motion Tracking System


	3.4 Implementation Prospect

	4 Parallel Computing Analysis
	4.1 Fundamentals
	4.2 Dependency Analysis
	4.2.1 Stage 1 - Frame optimized parallelism
	4.2.2 Stage 2 - Out-of-FOV optimized parallelism
	4.2.3 Stage 3 - Sinogram sorting optimized parallelism

	4.3 Hierarchical Thread Modeling
	4.4 User Interface Communication

	5 Implementation
	5.1 Mathematical Interfaces
	5.1.1 Direct-Access Matrix Management
	5.1.2 Indirect-Access Matrix Management
	5.1.3 GNU Scientific Library (GSL)

	5.2 External Interfaces
	5.2.1 Listmode File Management
	5.2.2 ECAT Sinogram File I/O
	5.2.3 Motion Tracking Data
	5.2.4 XML based Import/Export

	5.3 Application Use Cases
	5.3.1 Calibration Management
	5.3.2 Movement Correction
	5.3.2.1 Thread Management


	5.4 User Interface
	5.4.1 Graphical Interface
	5.4.2 Command-Line Interface

	5.5 Advanced Memory Management

	6 Validation
	6.1 Sinogram Sorting
	6.2 Movement Correction
	6.2.1 Axial Movement
	6.2.2 Transaxial Movement
	6.2.3 Rotational Movement
	6.2.4 In Vivo

	6.3 Performance Comparison
	6.4 Summary

	7 Future Developments
	8 Summary
	A User Documentation
	A.1 System Requirements
	A.2 Command-Line Options
	A.3 Graphical User Interface
	A.3.1 Main Components
	A.3.2 Movement Correction Components
	A.3.2.1 Tracking Data GUI Components (1)
	A.3.2.2 PET Data GUI Components (2)
	A.3.2.3 Output Format GUI Components (3)
	A.3.2.4 Processing GUI Components (4)

	A.3.3 Cross-Calibration Components
	A.3.3.1 Data Storage Components (1)
	A.3.3.2 Data Source Components (2)
	A.3.3.3 Statistical Components (3)

	A.3.4 Application Settings Components

	A.4 Cross-Platform GUI Layout

	B Source Code Structure
	B.1 C++ classes in module - src
	B.2 C++ classes in module - config
	B.3 C++ classes in module - correction
	B.4 C++ classes in module - ecat
	B.5 C++ classes in module - getopt
	B.6 C++ classes in module - gui
	B.6.1 C++ classes in submodule - gui/calibration
	B.6.2 C++ classes in submodule - gui/plot
	B.6.3 C++ classes in submodule - gui/correction
	B.6.4 C++ classes within submodule - gui/settings

	B.7 C++ classes in module - math
	B.8 C++ classes in module - tracking
	B.9 C++ classes in module - pet

	 Theses
	 List of Figures
	 List of Tables
	 Listing
	 Abbreviations
	 Bibliography

