

Event-Driven Motion Compensation in Positron Emission Tomography: Development of a Clinically Applicable Method

Jens Langner

Dresden, 28. Juli 2009

Motivation

- Die Positronen-Emissions-Tomographie (PET) ist ein funktionelles Schnittbildverfahren zur Darstellung biochemischer und physiologischer Prozesse *in vivo*
- Breite Anwendung in der Onkologie, Neurologie und Kardiologie
- Räumliche Auflösung derzeit bei \approx 5 mm (Hirn) bis \approx 8 mm (Ganzkörper)
- Erste Ansätze in z.T. kommerziellen Bildrekonstruktionen zeigen eine Machbarkeit von \approx 2 mm Auflösung
- Akquisitionszeiten von mehreren Minuten sind methodenbedingt unvermeidbar (geringes Signal/Rausch-Verhältnis, dynamische Messungen)

Motivation

- Die Positronen-Emissions-Tomographie (PET) ist ein funktionelles Schnittbildverfahren zur Darstellung biochemischer und physiologischer Prozesse *in vivo*
- Breite Anwendung in der Onkologie, Neurologie und Kardiologie
- Räumliche Auflösung derzeit bei \approx 5 mm (Hirn) bis \approx 8 mm (Ganzkörper)
- Erste Ansätze in z.T. kommerziellen Bildrekonstruktionen zeigen eine Machbarkeit von \approx 2 mm Auflösung
- Akquisitionszeiten von mehreren Minuten sind methodenbedingt unvermeidbar (geringes Signal/Rausch-Verhältnis, dynamische Messungen)

- Patientenbewegung limitiert zunehmend die realisierbare r\u00e4umliche Aufl\u00f6sung
- Immobilisierung hilft nur bedingt

Auswirkung der Patientenbewegung

1) Qualitativ:

- Auflösungsverschlechterung
- Bildartefakte

PET-Aufnahme (F-18 FDG)

2) Quantitativ:

Auftreten von systematischen Fehlern

z.B. bei Zeit-Aktivitäts-Kurven, *Standarized Uptake Value* (SUV), Quantifizierung der Tracerkinetik

Konzentration [Bq/cc]

55 min Emission

(27 frames)

Auswirkung der Patientenbewegung (Beispiel)

Zielstellung

- Bewegungskorrektur bei PET-Hirnaufnahmen
 - unter Nutzung der Rohdaten (Listmode)
 - unter Nutzung einer externen Bewegungsverfolgung
 - routinefähig

Methoden

- 1) routinefähige Akquisition der Listmode-Daten
- 2) Bewegungsverfolgung
- 3) Entwicklung und Optimierung eines event-basierten Bewegungskorrekturalgorithmus

4) Integration in die klinische Routine (z.B. graphische Nutzeroberflächen)

Bewegungsverfolgung

- Externes Bewegungsverfolgungssystem (Infrarotkameras)
- Räumliche Auflösung besser als 1 mm
- Zeitliche Auflösung < 50 ms
- Ausgabe der Translations- und Rotationsparameter

<u>Methodik</u>:

- 1. Installation des Verfolgungssystems
- 2. Entwicklung eines geeigneten "Bewegungstarget"
- 3. Integration der Bewegungsmessung in den klinischen Ablauf

Bewegungstarget

 Registrierung von Koinzidenzereignissen (Events) zwischen zwei Detektoren - *Line-of-Response* (LOR)

Methodik:

- räumliche Transformation aller registrierten Ereignisse (ca. 300.000 pro Sekunde)
- Einsortieren der korrigierten Ereignisse in Histogramme
 - Nutzung der Standard Bildrekonstruktion

- 1. Detektor-Normalisierung
- 2. LOR-Diskretisierung
- **3. Out-of-FOV Korrektur**

Methodik:

- räumliche Transformation aller registrierten Ereignisse (ca. 300.000 pro Sekunde)
- Einsortieren der korrigierten Ereignisse in Histogramme
 - Nutzung der Standard Bildrekonstruktion

- 1. Detektor-Normalisierung
- 2. LOR-Diskretisierung
- **3. Out-of-FOV Korrektur**

Methodik:

- räumliche Transformation aller registrierten Ereignisse (ca. 300.000 pro Sekunde)
- Einsortieren der korrigierten Ereignisse in Histogramme
 - Nutzung der Standard Bildrekonstruktion

- 1. Detektor-Normalisierung
- 2. LOR-Diskretisierung
- **3. Out-of-FOV Korrektur**

Methodik:

- räumliche Transformation aller registrierten Ereignisse (ca. 300.000 pro Sekunde)
- Einsortieren der korrigierten Ereignisse in Histogramme
 - Nutzung der Standard Bildrekonstruktion

- 1. Detektor-Normalisierung
- 2. LOR-Diskretisierung
- **3. Out-of-FOV Korrektur**

Methodik:

- räumliche Transformation aller registrierten Ereignisse (ca. 300.000 pro Sekunde)
- Einsortieren der korrigierten Ereignisse in Histogramme
 - Nutzung der Standard Bildrekonstruktion

- 1. Detektor-Normalisierung
- 2. LOR-Diskretisierung
- **3. Out-of-FOV Korrektur**

Methodik:

- räumliche Transformation aller registrierten Ereignisse (ca. 300.000 pro Sekunde)
- Einsortieren der korrigierten Ereignisse in Histogramme
 - Nutzung der Standard Bildrekonstruktion

- 1. Detektor-Normalisierung
- 2. LOR-Diskretisierung
- **3. Out-of-FOV Korrektur**

- "Verlust" von Ereignissen durch Transformation von LORs ausserhalb des Gesichtsfeldes (FOV)
- Erster Lösungsansatz [1]:

 $f = \frac{\text{Messzeit}}{\text{Messzeit} - \text{Out-of-FOV-Zeit}}$ $N_{\text{korrigiert}} = N_{\text{gemessen}} \cdot f$

- "Verlust" von Ereignissen durch Transformation von LORs ausserhalb des Gesichtsfeldes (FOV)
- Erster Lösungsansatz [1]:

$$f = \underbrace{\text{Messzeit}}_{N \text{esszeit} - \text{Out-of-FOV-Zeit}}$$
$$N_{\text{korrigiert}} = N_{\text{gemessen}} \cdot f$$

Dieser einfache Ansatz löst das Problem nicht immer:

Methodik:

3. Transformation aller Ereignisse zum Zeitpunkt **t**_{ref}

Methodik:

- **Ziel:** *Minimierung der Out-of-FOV Faktoren*
- Ursprüngliche Korrektur:

Transformation aller Ereignisse zum Startzeitpunkt (**t**_{ref} =**0**)

- Optimierte Korrektur:
 - 1. Analyse der Bewegungsdaten
 - Finden eines optimalen
 Referenzzeitpunktes (t_{ref} = t_{opt})
 - <u>Bedingung</u>: Position, in der sich der Patient die längste Zeit befunden hat
 - 3. Transformation aller Ereignisse zum Zeitpunkt **t**_{ref}

Methodik:

- **Ziel:** *Minimierung der Out-of-FOV Faktoren*
- Ursprüngliche Korrektur:

Transformation aller Ereignisse zum Startzeitpunkt (**t**_{ref} =**0**)

- Optimierte Korrektur:
 - 1. Analyse der Bewegungsdaten
 - Finden eines optimalen
 Referenzzeitpunktes (t_{ref} = t_{opt})
 - <u>Bedingung</u>: Position, in der sich der Patient die längste Zeit befunden hat
 - 3. Transformation aller Ereignisse zum Zeitpunkt **t**_{ref}

Methodik:

- **Ziel:** *Minimierung der Out-of-FOV Faktoren*
- Ursprüngliche Korrektur:

Transformation aller Ereignisse zum Startzeitpunkt (**t**_{ref} =**0**)

- Optimierte Korrektur:
 - 1. Analyse der Bewegungsdaten
 - Finden eines optimalen
 Referenzzeitpunktes (t_{ref} = t_{opt})
 - <u>Bedingung</u>: Position, in der sich der Patient die längste Zeit befunden hat
 - 3. Transformation aller Ereignisse zum Zeitpunkt **t**_{ref}

Ergebnisse Optimierung

- Deutliche Reduzierung der Out-of-FOV Faktoren
- Deutliche Reduzierung der Bildartefakte

Ergebnisse Optimierung

Qualitativer Vergleich

- Deutliche Reduzierung der Out-of-FOV Faktoren
- Deutliche Reduzierung der Bildartefakte

Beispiel 1: Patientenuntersuchung (I)

Ohne Bewegungskorrektur

Mit Bewegungskorrektur

Männlich, 64 J.
 Differentialdiagnose
 M.Parkinson

<u>PET-Akquisition</u>:

Konzentration [Bq/cc]

0,0

F-18 DOPA 171 MBq i.v. 10 min Transmission 55 min Emission (27 frames) <u>detektierte Bewegung</u>: 1,2 - 19,4 mm mean: 11,3 mm

Transaxial

Transaxial

- Bessere Abgrenzung des Striatum
- Reduzierung der Bildartefakte

Beispiel 1: Patientenuntersuchung (II)

Quantitative Beurteilung unter stoffwechselkinetischen Gesichtspunkten:

- Standardverfahren am PET-Zentrum für *M. Parkinson* Auswertung:
 - 1.Positionierung von 8 Region-of-Interest (ROI) innerhalb des Striatum + 1 ROI in Referenzgewebe okzipital
 - 2. Vergleich der Zeit-Aktivitäts-Kurven; Berechnung der Einstromraten (R₀k₃) eines Zweikompartment-Modells mit Referenzgewebe (Patlak-Auswertung)

Beispiel 1: Patientenuntersuchung (IV)

55 min Emission

(27 frames)

Beispiel 2: Patientenuntersuchung

Zeit-Aktivitäts-Kurve

Zeit [min]

Konzentration [Bq/cc]

Zusammenfassung

- Patientenbewegungen haben einen potentiell großen Einfluss auf die Bildqualität
 - Die event-basierte Bewegungskorrektur minimiert diesen Einfluss
- Erfolgreiche Integration der Bewegungskorrektur
 - ✓ unter Nutzung der Rohdaten des PET-Scanners (event-basiert)
 - ✓ unter Nutzung eines hochauflösenden Bewegungsverfolgungssystems
 - ✓ in die klinische Routine (inkl. graphischer Nutzeroberflächen)
- Teile des Verfahrens bereits an zwei andere Zentren transferiert (Forschungszentrum Jülich; Columbia University, New York)

Ausblick

- Weitere Optimierung des Korrekturverfahrens
- Untersuchung des Einflusses der Bewegungskorrektur anhand eines größeren Patientenkollektives

Danksagung

Prof. Dr. Jörg van den Hoff

Prof. Dr. Hans Herzog, FZ-Jülich

Dr. Frank Hofheinz

Dr. Paul Bühler

Dr. Christian Pötzsch

Dr. Sören Dittrich

Dr. Uwe Just

Dr. Edmund Will

Hagen Mölle

Dr. Bettina Beuthien-Baumann Dr. Liane Oehme Dr. Annette Strumpf Heike Schröder Claudia May

... meiner Familie und Freunde

Danke für Ihre Aufmerksamkeit

Ausblick Patientenstudie

- **912** routinemäßig durchgeführte Hirnmessungen + Bewegungsmessung
 - 666 F18-DOPA (M. Parkinson)
 - 143 F18-FDG (M. Alzheimer)
 - 54 F18-OMFD (Onkologie)
 - 49 andere
- 1)Bewertung der Bildqualität nach Bewegungskorrektur momentan im Gange
- 2) Auswahl eines geeigneten Patientenkollektives
- 3) Auswertung der quantitativen Änderungen durch Bewegungskorrektur

Evaluation Punktquelle

Qualitative Comparison

	Resolution	Std.
	(FWHM)	Error
At rest	$5.46\mathrm{mm}$	0.02
(reference image)		
Motion	$6.62\mathrm{mm}$	0.01
Corrected		

Klinische Listmode Akquisition

- Datenzugriff auf die Listmode Daten oftmals limitiert (0,5 MB/s bei ECAT HR+)
 - Überlicherweise keine klinische Nutzung da Übertragungszeiten typischerweise mehrere Stunden

Klinische Listmode Akquisition

- Datenzugriff auf die Listmode Daten oftmals limitiert (0,5 MB/s bei ECAT HR+)
 - Überlicherweise keine klinische Nutzung da Übertragungszeiten typischerweise mehrere Stunden
- Optimierter Datenzugriff durch alternativen Datenzugriff (70 MB/s bei ECAT HR+)
 - Beschleunigung ermöglicht Zugriff in < 1 min</p>

[1] Langner, J. et. al; Z. Med. Phys. 2006; 16(1):75-82.

Graphische Nutzeroberflächen

r 🔽	List-Mode Acquisition v4.7		
<u>File Preferences E</u>	ktras <u>H</u> elp	File Edit	
Patient name (first, last	John Doe		
Patient weight	80 kg	Canu Pla	
Study Pattern Study Description	doe_080714	trkacq	
Acquisition Type	F-18 Dopa	Imacq	
Dosage	300 MBq		
Patient Orientation	Mesod First Suping		
Study Type	Single Sed O Whole Boxly		
Acquisition of	Transmission		
Acquisition Duration	3600 s 01:00:00 h		
Framing Scheme	: frames		
Plane Mode	🗘 2D 🐞 3D		
Transmission Duration	600 s 00:10:00 h		
Transmission Scheme	TITEE		
Options >>>			
Processing transmission 1 of 1			
waiting for transmission to finish (-00:09:53)			
Started: 17:48:54	Protocol Executi		
Abort			

(b)

listmode, 280699

(27 frames)

Beispiel 2: Patientenuntersuchung (I)

Transaxial

Transaxial

Beispiel 1: Patientenuntersuchung (III)

Beispiel 1: Patientenuntersuchung (IV)

Ohne Bewegungskorrektur

Mit Bewegungskorrektur

Beispiel 1: Patientenuntersuchung (V)

Parameter Images

Bewegungsverfolgung II

- Infrarotes Bewegungsverfolgungssystem
- Räumliche Auflösung < 1 mm
- Zeitliche Auflösung < 50 ms
- Ausgabe der Translations- und Rotationsparameter

Bewegungstarget:

• Evaluation durch Vergleich mit einem Referenztarget

Bewegungsverfolgung III

Motion–Tracking Summary Tue Sep 11 13:58:11 2007			
Analysed subject: doe_070911.trk Acquisition time: 55.00 min Total # motions: 42674 (a 77 ms) Cross-Calibration: cc_070901.tfm			
Reference target motion:XY(should be ~0.0)0.0590	(Z 0.023 0.026 [mm] 0.004 0.004 [deg]		
X X Patient target motion: 2.554 5.162	۲ Z 11.007 12.657 [mm] 1.373 1.783 [deg]		
Head movement analysis on head surface (r=100mm): 10 sign. 'best' point on head surface: 0.8–7.5 m 'worst' point on head surface: 0.8–17.7 distance fluctuation: max. +/– mean distance: max. 10.1 on 'mean striatum' areas: 3 sign. r L striatum [56:60:36]: 0.0–14.5 R striatum [78:60:36]: 0.0–14.4	motions > 4 mm mm 7.3 mm mm notions > 4 mm mm mm mm mm		
Estimated Score: 5 (1: no motion, 2: low motion, 3: moderate motion, 4: significant motion, 5: high motion)	(¢) 3 deg		
0 - 1 - 1 0 10 20 30 40 50 - 10 0 10 20 time [min] time [min]	01111111 -		